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PREFACE

“When the editors of The Quarterly Jowrnal of Economies first
imsued “ Rudimentary M athematics for Economists and Statisti-¢
clans’ as a Supplement to the Journal in March, 1938, they did™
not foresce that a fairly large printing would rapidly be exhaugted)
Freguent inguiries about the Supplement, since it went ‘it of
pnt, led to the deeision to publish the text as a separat@wolume.
in taking this decision, carcful thought wag given té’the choice
betwoen retaining the original text practically undhj}nged except
for minor corrections and carrying out a considCeable revision in
vertain parts of the treatment. The sccor}d\}vsume was chosgen,
but with the definite understanding tha~both the plan and the
main treatment of the original edition would be retained and that
the new materials to be added would, be limited with a view to
preserving the objective of preseriting rudimentary ideas in
& treatment direeted to beginnexd, ~ That objective, and the point
of view of the treatment, need 1ot now be stated otherwise than
as they appearcd in the’pi(‘:face of the 1938 Supplement, which
iz roprinted on page w% ) _

The present volume could not have been completed so 800N, hor
could it have reflested such marked improvement in content and
presentalion, hud (e task of revision not been largely assumed by
my eoIIe::ugqc{i’fofessor Schumpeter, His far greater experience
with the udedand the teaching of mathematies in economics brings
thiz new\evision to a higher level than I alone could have achisved.
Althptig}{ we consulted together about all aspects of the revision,
tlie $6tual preparation of the new malerials, both the minor alter-
atibns and the substantial additions to topical content, was mainly
the work of his hand. 8o great has been his contribution that I
have induced him to permit his name to be included equally with
mine in the authorship of the present book.

We are deeply grateful for the interest shown by students and
other readers of the Journal Supplement and express our thanks
especially to those who reported errors that they found in spite of
all efforts to avoid slips in the text. We have likewise sought to

-
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avoid slips in this edition. We shail be grateful to readers who
call our attention to any that have escaped us or who make other
suggestions for the improvement of the hook.,

So far as the present toxt reproduces materials that appeared
in the Supplement, permission to reproduce has been graried
by The Quarterly Jowrnol of Economics; and the authors are grate-
ful for this generous permission,

W. L. Cl«‘»@
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Caymrives, Mass,,
March, 1946,
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PREFACE TO THE FIRST EDITION

The objective of this book is to prosent rudimentary ideas and
opurations cssential to any effective mathematical reasoning by
esonomists and sfatisticians.  The book does not aim to present as,
yitematic treatise on what hag come to be called mathematicl
£eon0mics, hor 13 it & systematic freatise on elementary Imnth\:-
63 or even a comprehensive discussion of the num(,rnus,
withematical analyses of elementary ceonomic thewrm or sta-
tisties. Tt is direeted to the mere hoginner—io thL, séader who
Liag never studied mathematics beyond the ﬂrst"cburhe stage of
elgebra and geometry or has studied “advanced¥™hathematics so
i 2 5g0 that his memory is hazy or blanky, NY

The present-day economist feels an impelling need for mathe-
matical understanding.  Published cebivmic w ork, in books or
iearned journals, places an in creasmg reliance ypon mathematieal
melliods of analysis; and the readel who does not comprehend
guch methods is under a swotc h;mdlcap Likewise the clags-
roora student of economies—graduate and _undergraduate—ig

ecustantly encountering &uibject matter in which mathematical
methods are helpful extésdential. The necessity for removing, at
least partially, the,mathematical deficiency under which many
economists labowishe oceasion for this book. The book is not a
substitute for sys\tematw training in mathematies; and, in offering
the bock to\'ﬂ)oae ecoriomisls who may hopo tn beneﬁt by its
study, I shall not relax advocacy of every effort dirccted to extend-
ing mu‘i strengthening the mathemutical training of prospective
{’COﬁQTHhtS I surely express the sincere wigh of many colleagues
{n'yenturing to hope a later generation of ceonomists will be so
well prepared in mathematics that occasion for & book of this sort
may disappesar.

Long observation of the mathematical difficulties of my students
has given me a deep-rooted conviction that their mystification
results almost invariably from a lack of precisc understanding of
the very rudiments of the subject. The “mystery of the
caloulus’ is a mystery largely because students have never really

Vil
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mastered the central ideas from which the ealeulus is developed or
ideas still farther back and still more basic than those central ideas, -
or because such understanding as they have had runs in Lurms
of physical and geometrical illustrations that cannot rea‘gdiiy be _
identifted with the problems of cconomics. A the risk of giving
a presentation that may seem painfully detailed and monobomous -
to the reader, I have written these bages with the precise purpose
of sehooling him so thoroughly in certain root ideas that heléan
proceed with self-relisnce to the more commplex pr()bl({l’ﬂ? and
elaborate treatments found in various texts and other Buidishied
work,  To the student who will faithfully and patiently mastor
these pages, subsequent mathemation] work in_eGopomics will
appear less clouded in mystery.  That such subsequent work muy
involve many concepts and operations not treufod in the following
pages is gladly granted ; the book aims merelgnto provide that solid
foundation of elementary knowledge whish“will give the student
self-reliance to erect a superst-ructurp«}sf more advanced knowl-
edge by his own efforts, O\

The material of the hook hagbeen organized to develop the
mathematical topics from “the ‘simplest types of charting of
eleraentary algebraic expreséibhs, and rclated notions of analytic
geometry, through the gentral and vital treatment of limits ard
rates and derivatives , BP0 & brief consideration of the location of
maxima and minimd.and the formulation and solution of simple
problems by the éthod of differential equations. As mathe-
matics ig usuallytaught, the Pbassage from geometry and algebra
to differenginléquations g by & fairly long route; and the com-
pression dfbempted in this hook has been undertaken deliberately,
and with)a conviction that it i« feagible, ' :

Thrsughout, the Mustrative material hag been drawn almost
'egiclhsivuly from economie theory, with a few cages from statistics,
~\it the belief that one of the chief difficulties of economists is the
“expression of thejr problems in gymbolic terms.  Naturally, the
illustrations cannot touch in any comprehensive way the great
range of mathematical applications in economie theory; and the

factors or qualifications essential to eareful ceon
At frequent points whore such oversimplifieation b
Thave noticed the factaga warning tothe reader,

mathematical argument, I have

as seemed wise,
Likewise, in the
at various pointg indicated that,
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mmportant questions of refinement in reasoning have been ignored.
While the mathematical analysis is intended to be valid as far as
it goes, earcful and complete insistence on rigor has been neglected
lest the beginmer suffer an even greater hewilderment than that
which the book seeks to remove. '

Great, care has heen taken to ensure accuracy, in both the
mathematics and the economics; but I doubt not that various
iraperfections remain. I shall be grateful to readers who eall my
sftention to crrors or thake other helpful suggestions in anmmpm
ticn of the nneertain day when another edition may be attempﬁsd

W. L. Crowm. 3

. CamBriner, Mags.,
March, 1938,
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RUDIMENTARY MATHEMATICS FOR
ECONOMISTS AND STATISTICIANS

CHAPTER T
GRAPHIC ANALYSIS: SIMPLEST CASE .\:\

Y

Xumerous problems in economics and stabistics requa,re the
study of items—such ag output, cost, wages, rent, pmﬁt My est-
ment, income—that vary, either ag time passes o J}“\om place to
plase or case to case; frequently the varistionsof\such an item
has a form that nnphes the existence of gome limiting size
for the item. 'The determination of this miting size, and
the way in which the limit is approa('hed“i‘« the key to much of
the content of this book. For thc ,study of limits, relatively
simplec cagses from the theory of cogb& provide usgeful illustrations.
After u rather detailed examlnaitmn, in thig and the next chapter,
of the graphic methed and of very elementary matters of defini-
tion and prineiple, we shall 'Ql rdeced in the third chapter to develop
the limit coneept. )

Total Cost. Céuppo\\that a single producer is turning out =
single and uniform, égmmodity, under eonditions of cost that are
to be examined\XWhen his operations are at some particular
rate, lof, the qj}anmtv of output per unit of time be ¢ and the
correspondifg) total cost of producing this specified output be e.!
The firs{ 4k is to develop a mathematical representation of the
rela,tmn bet\\ cen g aud ¢ for each of several simple agsumptions
Lom;emmg the nature of his costa,

bhe dosived mathematical representation takes two forms, the
graphic and the symbolic. The graphic representation is
probably already familiar to the reader, from clementary sta-
tistics,. Tmagine that the producer has compiled a table of the

' Thus g¢—and the same is true of ¢e—is a rafe of the sort ealled a “time
rate.”  The rate idea is of basie importance in econemic analysis, as will
appear below (Chap. IV), but it need eausge no worry at this stage.

1
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cost ¢ associated with each of scveral quantities of output ¢.
He may have secured this table by caleulating ¢ by adding,
for each sclected g, the various elements (constituents) of cost—
for labor, materialy, use of cquipment, supervision, and so on—
that he or his engineer or other expert knows or estimates would
be invelved in producing g.  This method is a priori or deductive:
it arrives at ¢ by starting from certain known or assume:d rules
or laws that connect the constituents of cost with the voluxQe of
production. '

On the other hand, he may have sceured this table by ():bé;erving
¢ for each of the actual quantities of output spétified by ¢
Such an observational or experimental determi nséti'gn of the table
should, to be satisfactory [or the present dis¢ligsion, take place
under conditions that economists and othelysbiéntist-s, gsomeatimes
loosely and perhaps often lazily, describévfis “all cther things

TA.'P;T:E ]_.—TOTAL. COST & INCL‘DENT TO’&.&.O’DUCIN’G Liacu SPEC].F.LED

QuanTITY oF OUTPTT ¢ oF 4 UNWORM COoMMCDITY BY 4 SINGLE
ProoTeer witHE Uncaareing GONDITIONS oF Propudrion*

q c .:.’: . || q : ¢
0 I8 5 56
! A\ 20 8 70
2 N 26 7 86
3 1O 8 104
TP\ 44 ! 9 124

# Units: Fop *q; thousand yards; [vr g, hundred doliars.

AS
beingeglial.”  What doecs this vague phrase mean here?!
1§ mangins that, as the producer passes from one stage of his experi-

Jent to another, ¢ is the endy variable magnitude, affecting his
Loste, that he allows to change. Other variables that might

alfect costs—such as the price of materigls, the type and arrange-
ment of his machines, the wage scale, the skill and discipline of
his labor, the supervisory and other organizational aspects of
production—remain unchanged.?  All this does not imply that

! We dwell upon this point partly

) ) becanuse of the intrinsic importance to
the present diseussion, and partly

oty o st o partl to aeeust-c?m the reader to the necessary
e g the precisc mgmﬁcm:}c.(: of every word and phrase.

‘ Dresupposes that the producer is operating under conditions of the
31_11113193*3 and most perfoct competition; thus prices of the [actors of produc-
tion do not change as he expands his output. i

-



GRAPHIC ANALYSIS: SIMPLEST CASE 3

the methaods to be studied below can never be adapted to cases
in which one or more variables other than ¢ may change. It
merely mezns that, for the present purpose, a simple and cffective
treatment roquires the experiment to be conducted with only
the single variable ¢ changing and bringing about changes in ¢.
If the table has been arrived at by this observational procedure,
the data in that table are called empiricel and the process of
drawing inferences from the data is induciive.

C | O\
190 A
i m'\"\'.' ¢

¢:°

100 \

| L W0
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- o v’”’

N o} N\
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. ‘i 13 1 i\\~.: 1 1 L ) L 1 1
0 i 2 O 4 5 6 7 5 5 Q

Cr:nT 1;’(}",5&3 of particular outputs, based on Table 1.

WthiC-hm-'e;”‘;;ntéthod the producer used in obtaining his figures,
let them ]Qfe}a%"given in Table 1. We undertake first the graphic
represenﬁatlon of these facts (Chart 1). Measure a particu]ar
valug ‘ot 7 in the horizontal direction indicated by the axis 0@,
fl'ﬁQl‘O as zero, in some scale, relating distances measured along
0Q to specified sizes of ¢, to be determined.! Likewise, a
particular value of ¢ is measured in a vertical direction indieated
by the axis OC, from O as zero, in a scale to be determined.
Actually, g line (vertlcal) is drawn parallpl to OC st the distance
% a8 above measured, from OC; ¢ is then measured, upward

' The direction is g matter of convenience or custom: ¢ might have been
faken vertically and ¢ herizontally.



4 " RUDIMENTARY MATHEMATICS

along this line, from 0. This process locates the desired point. .
The horizontal measurement from @ is called the abscissa, and
the vertical measurement the erdinale, of the point to be located,
The pair, abscissa and ordinate, are called the coordinates of .the
point. Horizontal distances toward the right are taken positive,
toward the lelt arc negative; vertical distances upward are taken
positive, downward are npegative. There is no fixed rule for
choosing scales, the number of 1,000-yard uaits of ¢ per {iich
along OQ, or number of $100 units of ¢ per inch along OC;
the ehoice is a matter of convenience, largely governed "By the
desired size of the diagram., Morcover, there is BOMVACCEREALY
connection between the scale for ¢ and that for c{(3ge, however,
page 10), again it is & matter of convenience; agcdmmon practical
rule is to choose the two scales so that theNedmpleted diagram
will have a height somewhere hetween Q),and 100 per cent of
its width.! ' D
Huving reached the foregoing d&ci?ions a5 to how to make
measurements and as to the scales, &pbint can actually be located
on the chart to represent each\of the 10 pairs of numerical
magnitudes, for ¢ and ¢, gij»fgri.'ih Table 1. The result is shown
m Chart 1. Here the poiats (represented by small circles, to
make them clearly visible) aro not joined by a curve, or by & series
of linc segments. .Lhc reason for refraining, temporarily,
from doing this i\‘sﬁa;t’ Chart 1 is designed us an exact representa-
tion of the recurd ‘given by Table 1. Had a curve been drawn
through thepoints, or had suceessive pairs of points been con-
nected hw }%might lines, the chart would have conveyed an
impressiut as to costs for other values of ¢ than the particular
casef\gpecified in the table. For some purposes, as we shall gee,
thi;:‘? 13 desivable and justifiable ; but, for the moment, the chart
&Wes no information oxcept that in the table,?

"In practice, one ascertains the range between the lowest and highest
values of ¢, and likewise Tor ¢, and bases the scale selection on these,  Or, il
one wishes to show the zero point of the chart, as in the present case, one
uses merely each highest value to guide the selection of seales, This inde-
pendent E:hoice of scales for ¢ and ¢ js satisfactory for the mere graphie
presentation of the data, as in Chard, 1; for certain analytical purposes, the
scales cannot be independent, For example, sec footnote 1, p. 25.

* Anyone accustomed to study charts will almost surcly form in his mind

inst such & curve as we have purposely omitied and

an imaginary picture of
proceed to draw inferences from it concerning the relation between g and ¢



GRAPIIIC ANALYSIS: SIMPLEST CASE b

The graphic representation in Chart 1 conveys to the mind of
the reader certain impressions coneerning the relation between g
and ¢; some of these are conveyed also by Table 1, but some of
them are afforded not at all by the table, or only imperfectly
and to a reader well skilled in understanding tabular data.
Marifestly there is some cost, ¢ being 16 for ¢ zero, even when
£
150 - .

193 +

50 -

E ] L ] \NI ] 1 L] .l 1
g 1 4 {’ 4 5 6 7 B 5 Q

Crarr 2—Congiguols cost function inferred frow data of Table 1.

oparations arq.&;hﬁplet-clyf stopped. We observe also that the
points s]ol)ejxipixrard as our eyves pass to the right: total cost
incresses, 48) output increases, which is what we should expect.
We nqﬁ&urther that the points rise more rapidly as we vpass
to th&wight, that the vertical movement from one point to the
mexi becomoes greater as we pass to the right: cost not only
“adreases with output, but inereases more rapidly than output.!

at points intermediate between those of the tuble, or perhaps fo the right
of the final point where g is 9. Correspondingly, we sometimes say in
elementury statistics that such a curve can properly be drawn “merely to
guide the eye from point to peint”; but this intent 1o resiriet the usc of the
line will not prevent the readcr of the chart from using it also as an aid to
interpolntion (the estimating of intermediate points).

1 This {act could also be discovered from the tuble by earrying out a small
operation on the data: the first differences of ¢, obtained by dedueting each ¢
from. that next following it in the table, increase as ¢ increases, - :
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This third observation is more clearly indicated if the prints
are joined by a curve. This is done, waiving the objections
raised above as to danger of interpolation, in Chart 2. There
the curvaturc—the nonlinearity-—of the array of points is -
emphatically apparent. Moreover, the curve is coneave upward:
its hollow side is above the curve. This fact shows definitely
that total cost increases more rapidly than output, but we roust
wait until Iater {page 119) to reveal this comparison in quadf; ta-
tive terms. ' ' . O\

Cost Proportional to Output. Before further analysis 6/ {he
given record of costs for the single producer, certyin additional
concepts can helpfully be introduced. To this efid, b succession
of particular assumptions eoncerning costs & "needed; these
assumptions are of the a priori sort—it s a8simed that the law
relating cost to quantity is known, withaut experimentation.

The first assumption is that a prodifeer operates under condi-
tions such that total cost is dirgefly” proportional to output.
Although in actual economic life.kuch a case of costs is not
easily found, because even A8 “simplest type of cost, mers
unskilled labor, is likely toidvolve questions as to whether mers
addition of more labor effeetively increases output in the same
proportion, the studefit can readily imagine cases in which
these conditions might be nearly realized. FEven though it is not
consistent with eéconomic reality, the problem in the form stated
has certain adyantages for purposes of analysis preliminary
to the study(Of more realistic situations. - On the assumed bagis,
if outpqt\'is’doubled, total cost is doubled; if output is tripled,
total gost’ is tripled; and so on. Elementary algebra tcaches
thﬁt\ fiis very simple law, connegting quantity and cost, can
!:fe:;expressed_ by the equation '

.’\

e = kg ey

where k is a constant—does not change when ¢ changes. 1In fact
this equation may be regarded as a definition of the con
direct proportionality. For a partieular value of ¢,
assuming k ig known numerically,
of ¢.b.

cept of
the formuia, -
gives the corresponding value

! The term “value,” as used in mathematics, refers to
size, with due regurd to0 4 or — slgn)
bol. The student of econemics, of co

the size (numerical
of & magnitude represented by & sym-
urse, Uses the word value in & different
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in Eguation (1), ¢ and ¢ are variables, the former generally
calizd the dependent variable and the latter the independent
parichle, and k is a constani, which means that it iz a fixed or
unchanging magnitude regardless of the various valucs taken
on kv the variables ¢ and ¢.?

Fguation (1) is said to express a functional relation between ¢
and ¢; or, alternatively and more often, ¢ is said to be a function of |
g. Jor the present, a sufficient definition of this concept 15
Tt +he value of the variable ¢ depends upon, or is determined By,
thai of the variable g, ¢ is said to be a function of g. Further
mete, the functions that ordinarily concern us in econgmils are
singi> valued: for each value of ¢ there is only Oneqfalﬁe of e
In Uouation (1), ¢ stands completely alone—to, the first power,
and without any multipiier or any other mathematieal symbol
attoched to it—on one side (usually, as hereythe left) of the
equasion, and the other side (usually, as'l%é:e, the right) of the
equation Is an expression not involving\g but involving only ¢
and “he eonstant. Such an equa@iqﬁ&s said to give ¢ as an
expiiait function of ¢. The expression on the right side might
have been much more complicated than that of Equation (1);
it might, for example, have ineluded the sum of several terms,
conlaining various pcm{'g:@ or roots or other functions of g,
witlhh ¢r without mul{gi@liﬁation by various constants. But, so
long a2 ¢ did not appedr on the right side, and appeared com-
pletely alone, as above, on the left side, the equation would éive
¢ a8 an explicit’furiction of g¢. Thus
\\ ¢ = ag® + k¢* — by
gives c}.}z?p]icitly in terms of ¢ and the constanis a, %, and &

(jﬁ}ge’ébnstants are assumed chosen appropriately).
P\
tehinical sense. He will have no difficulty in identifying which of these two
technical significations is implicd in the various instances in which the term
iz used in the present text. The point is noted here merely to put him on his
guard sgainst confusing the technical meanings of any term having more
than one such meaning. - :
. 1 Which variable, in a problem involving only two variables, shall be
- called dependent and which independent is, from a mathematical point of
view, 5 matter of convenience. In the present instance, we call ¢ dependent
because we are thinking of trying diffcrent outputs ¢ and then discovering
the corresponding costs e. DBut, so far as the gymbolism Ig concerned, it
makes no difference.
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In‘the terminology of elementary algebra, such an equation has
been solved for ¢ in terms of ¢ On the other hand, an equation
like

ac — ¢t = kg* 4 cq + 3¢

is sald to express ¢ as an fmplicit function of ¢ {although in this
case ¢ is not a single-valued function of g}: ¢ depends upon g,
but the equation has not been solved for ¢ in terms of g.'

Liquation (1} is an cxample of symbolic representa.tiop\agd hias
certain notable advantages over the graphic representation
utilized in the preliminary study of Table 1. One of the advan-
tages of such a representation is its gencrality .8 jji‘o_perty lan
tributed by the unknown, but presumahbly detetriinable, constant
k. In fact, Bquation (1) is equally valid‘$ér every produccr
for whom the proportional law holds. Fgr one such producer
cost may be three times output, for gdther five times output;
but these differences can be cappd for by . assigning diffcrent -
numerical values, 3 and 5, to k.  Thus, the only difference among
producers is that different nytherical values of % apply, or may
apply, to them. o

In this sense, that is to say, If we are considering differeut
producers, & i also a yaxisble. Such magnitudes, which we treat
a8 constants when @doaling with one aspect of a problem and ss
variables when EK‘,&Iing with another aspect, we call parameters.
Another example may be useful. The student is likely to come
seross the,pbbposition that, under conditions of perfect competi-
tion, plfi@s"‘play & parametrie role.” This means that in a
perfectlyf-competitive market no buyer and no seller'is in a posi-
tlop 38" influence prices by his own single-handed action (sec
ffdgtnote 2, page 2). Prices arc therefore data for every individual

(“btyer or seller, and we accordingly treat them as constanis when

o

desgeribing - individus] behavior in a market; whereas for any

other purpose they are of course not data but, on the contrary,

figure among the most important variables that economists seek
to determine.

1 ¥n all elementary work, we strive to avold implieit funetions ;. often, by
snlvm.g ffnr one variable in terms of the other, we can convert an i-mp].icitﬁ
funetion into an explicit function. Some implieit functional relations cannot
th.us be solved, but the student shonld not infer that this fact necessarily
Taises an insupecrable.obstacle to analysis,
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Although a considerable analysis of the gencral cquation
= kg | 1

would be possgible, and would yield much helpful information,
present purposes are beller suited by first adapting the formula
to a single producer—by rendering the general formula specific.
The customary device for rendering a general formula specific
is to impose an initial condition.) This consists in substituting<
a lnown pair of values for ¢ and ¢ In the formula and determin

k so that the equation will be satisfied. If we know, fei\the
single producer, the following pair of vulues

e =8, when g =2 <
k18 8, as found by substituting the known valuesbf'g and ¢ in (1).
The specific formula for the single producer i8\thus
SEENS) @
which enables us to ealeulate ¢ fOl‘:ﬁfI:l'}' value of .

Average Cost. The average 80t per unit for a partieular out-
put ¢ is defined as the ratio ofi¢*to 7, and we designate it by the -
symbol . In most cost gireblems the words “for a particular
ou‘rput” are essential t-g"the definition, as the average cost varies
for various outputs; Hub in the highly special ¢ase under examina-
tor in the precediﬁg gection, ag will appear immediately helow,
the average coptis’/constant for all values of ¢ and the qualilying
phrasge 1s neefﬂebs Thus, in genersal

A\
N s
R\, _ ¢
RS )

1§f hie word “initizl”? is unfortunate, because the conditivn impozed need
not, as uppesrs in the lext, have anything to do with a “beginning.'” It can
apply to any known pair of valucs of 7 and e (zee p. 1413,

* The words “por unit” are in & sense redundant; they are implied in the
word “average’’ as hiere used and as ordinarily used in elementary economin
theory. We shall Jearn, as we procced, that many technical concepts are
not absolute but relative, and require qualilying phrases in order that thelr
blgmhmme shall be precisely known. In the present mstance, ag remar]md
the words per unit’’ are not cdsential, though 1hr=y may protect us from thc
error of thinking that we refer to the average “over a period of years” oy

““among sev eml producing firms,” :

3)
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For the case of total cost directly proportional to output,
discussed in the preceding section, .

¢ = kq 4y

and, hence, by (3) '

' é= kg _ k (4)
q

For that case, then, the average cost is identical with the consfant

%; and, with our present definition of average cost, we mighiNiave

written the general Equation (1) in the form oA\
¢ =ag S
specitying that ¢ is fixed or constant. O3
Likewise, for the single producer for whom X183
t = 3¢ : (2)
e €=3 \\ - (5)

Certain advantages will arize frpm':t‘urning aside now to study
charts of Equations (2) and (5). \ Fbadents familiar with analytic
geometry will know that Equatioh (2) represents a straight ine.
Elementary geometry tefg,e,}{ééf that “two points determine a
straight line.”  We therefart find two pairs of values of ¢ and ¢
that satisfy Equationd(3). To do this we select two separute
numerical values of (@) substitute thern in Equation (2), and find
the corresponding walues of ¢. For examnple, one such pair is
(0, 0) and another is (4, 12).1 By plotting these two points cn «
diagram, Wlth axes of measurement chosen exactly as for Chart 1
but scales in"this ease determined so that a unit of ¢ is measured
{for Qiﬁdns given below, page 14) by the same distance as & unit
of grand then ruling g straight line through these two points, we
have a complete graphic representation of Equation (2), sce
line, although strictly an endless straight

. ! In stating a pair of values for two variables, it is customary to list them
In parentheses, the independent variable being listed firet, iikew‘ise, the
coordinates of a point are listed in parentheses, the ahscisas first and the -
ordinate second,
2 The ‘st-udent not familiar with analytic geometry will want evidence that
the strs.ught line shown does in fuet represent Equation (2): to date, all he
knows s that two points of the lipe ©,0) and 4, 12 belong to Equa-ti,l}n 2}
:[n the Jargon of the mathematician, such evidence, to be conclusive consists
in showing that the line is the foeus pertuining to the equation Whi.(":h Means
that the coordinates (1) of every point g the line satist ¥ the’ equation and
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line passes downward to the left of O as well as upward to the

right,

obviously exclude mnegative
cutput and negative cost as
“hawving ho significance.

The line in Chart 3 truly
and completely represents, in
graphic form, the relation
siween  cost and output.
like Chart 1, in which the
piotied points represented
oniy isolated pairs of values
and e as given in Table 1,
chart shows a continuous
that represents the rela-
for every value of ¢, not
owly whole numbers, but {rac-
tions. The appropriateness
of such a continuous repre-
sertation might be more

ol g
this
line
tion

apparent if we were considers \
ing such a highly divigible’

commodity as a liquid indulk.

As a means of dese{("{f}iﬁg the
ling, we can of cpurse report
the positions ¢pf any two
pointg, the twio plotted, or any
others, an,d;r.ay upon the fact
that txv%pbints determine a
line. | For some pUrposes, a
dir"ferent description of the

Jsition of the line is more
helpful.

10

O

0

we do not pass left of and below O; economice considerations

v

5 q

1 2 3 4

Cuart 3.—Continuous cost funetion for

total cost proportional to output.

This - deseription customarily consists in reporting

one point on the line—in this case the most convenient such

(2) of no point not on the line satisfy the equation.

We shall not inelude a

complete proof of facts 1 and 2 for this line, but mercly suggest that the
student ean largely remove any doubts he entertaing by maling tests: Choose
any point on the line, measure its ¢ and ¢ from the chart, and verify that
they sutisfy (st least as closely as the accuracy of his measurements permits)
the equation; ehoose any point off the line, and verify that its ¢ and ¢ de not

satisfy the equation.
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point is (0, 0), but any point would do 2s well—and the direction
of the line. The direction may be specified in either of Lwo ways,
' by the inclination or the slope;
C to facilitate definition of these
~ terms, the line is rep.oduced -
in Chart 4. The inciination
of the line 04 iy the angle
that it makes with the fbri-
zontal axis O, such, ghgle,
designated by the ,gﬁn\%ﬂ'ﬂ e,
being measuredupositively
from the posifive horizontal -
axis 0@ caiiterclockwise to
the lineNOA. As a special
case, thovnelination of 5 hori-
zonfgbline is zevo. The stu-
dtsr.\}t ‘will know from his
{démentary geometry that this
2\ “same angle o would be found
88 if the measyrement were made
N from the positive direstion
) of any horizontal line—pro-
longed, if necessary, to inter-
seet OAd—and not exclusively
from 0€Q. Just as the two
points (0, 0) and (4, 12) com-
pletely determine the line, the
- . one point (0, 0) and the angle
U' '\\"1 £ 3 4 5 [1 a completely determine it;
3 Crart 4—Angle of inclination, no other line meets these
- . . requirements,?
The stope of the Kne 04 mvolves & concept, from trigonometry, .
the tangent of the angle a.2 The slope of a line is defined ag the

1 Fo.r the particular line ag shown, o of course has s, definite numerical size..
We ?‘Illg‘ht measure it with o protractor, finding it about 7114°, A more
Precise numerical determination will be given immedistely belo*w'.
£ The langent of an angle—the student must not confﬁse thiz uge of the
waord t[l,:!lgf)llt. with that implied in “tangent to g cirele” or to some other
curve—1s usually defined in tormy of an angle smaller than 90°% an aecute’
im.gle. . I.f sueh an ar}gle is regarded 45 one of the two acute angles of a right

riangle, its tangent is the ratio of the length of the side of the triangle oppo-

10
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tangent of the line’s inclination. The tangent of « is BP divided
by OB. P is a general point—any point, other than O—aon line
GA; the student will noto that these label letters have carefully
basn read away from the respective zxes and toward the point.,
For the present case, these are positive dircetions: but if P were
located so that ¢ and ¢ were not both positive, reading in this
way would vield the correct sign for tan «. As P is (g,c), the
tangent of e, customarily represented by the cornpound symbol ,
tan a,t i

O\
a \

L W

t&n(x:—@:

OB

€y o

".'.
< %

aindd, ng ¢ and e satisfy Equation (2) D
N\
tan o = 3¢ _ 3 ’
¢ Y,

The point (0, 0) and the slope 3 compl\e-tf‘ly determine the
position of the line. Knowing that fahw is 3 enables us to
determine « in angular measure mQre “recisely than by a pro-
tractor. Thus, a table giving tan @for various values of « shows
thai, when tan « is 3, « is 71°450approximately.

We raight infer that for the tore general case of Equation (1),
which we may suppose graphically represented by a line of
inclination § through {Qint 0,

¢ _ kg -
Slnc—tan =2 =fk=¢
.‘\p_ 8= g g

We concludg&ﬁ‘hﬁt, when total cost is direetly proportional to
ouiput, t%uélation between ¢ and ¢ is represented by a straight

site t,hc;'a'!'lgle to the length of the shorter of the two sides adjacent to the

tleM The student can compare this definition with the right-triangle
it OBP in Chart 4. As a special case, the tangent of a zero angle is zevo.
The definition, with due care for signs, can be extended to angles that are
not scute. If, for example, the angle between 0@ and 04 iz 120°, the
tangent of the angle is the ratio obtained by dividing the length (positive)
of a vertical lingc—measured from O, as extended leftward, to A—by the
horizontal length (negative) from O leftward to the foot of that vertical line.

' These compound symbols will appear, in various formg, In our further
work, We must form the hubit of remembering that they are mere abbre-
vialions: tan e means “tangent of «,” just as log £ means “the logarithm of
z,” and +/2 means “‘the positive number whose square is 2.”



»M3y admit of several
verbal interpretations,
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line through (0, 0) having a slope equal to the average cost, which
18 constant.!

Instead of a description of the cost situation in ferins used
in the first assumption, that total cost is directly proportional to
output, the deseription might; equally well have read “average
cost is constant.” This alternative verbal description of the
relation between cost and output would lead to p: f:{:iéely
the same symbolic representation as above. Thus, usiags the
definition of average cost , O\

NS ©

R : N
o=

o
P
S )

] o

- . 4 '\ 4 .
and observing that our assumption now states‘ig}hat €13 a congtant,
which we shall call £, though we might use any other letter that
we agreed would represent a, congtant, mb-have

=% ‘:f ) {4)
and ’ ™

*»
N

and, hence, solving fof's explicitly
RN

N\ ' e = kg (1)

as before. This treatmont illustrates the general principle that
alternat%vg{ \Werbal assumptions, so long ag they are strictly
eqmvgjl\e@&,' vield the same symbolic relation between the vari-
ablés \Conversely, and this frequently leads to confusions in

culthinking, though it shoyld not do.so, a single symbolic formula
alternative, though strictly equivalent,

cost is. constant, nced not lead to the symbolie formula given in
quatmn (1). Tt does 80, and then unavoidahly, enly if we
I8ISh on & symbalic representation in terms of ¢ and ¢. If
we were content with g Tepresentation in terms of the variables

i This Presupposes the seales chosen as spocifie
sents a unif of ¢ ag 5 unit of ¢,
tion of the conelusion would o+

. d: the same distance TEpre-
A strious; and in no senge kelpful, modifica~
herwise be needed
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¢ and &, 4.6, with an equation showi ing the relation of ¢ to ¢,
the new form of the assumption immediately yields

c=k (4)

where £ is the lefter chosen to represent the constant. The
varisbles in this case are ¢ and &, not g und ¢, It so happens that
g do=s not appear in the equation; but this does not mean t-hat\
Bhuation (4) shows no relation between ¢ and ¢, it merely meang
thai the relation is of an extraordinarily simple sort, viz., tKab ¢
does not change as g changes.  Equation (4), granting oug™defini-
ticn of average cost, is just as good a representation ef\ the cost
situation of the specified producer as Equation (1). ﬂTe saw just
above that Equation (1) ean be obtained frum\]izquatwn (4)
ang on page 10 that (4) can be obtained from\{L)Y
This interchangeable quality of the twe.) equations is the
symolic counterpart of the fact that the4wo verbal forms of
the sssumption are strictly cqulvalent‘ 'The matter is of little
vertical importance in such a simple problem as that here under
siw .y, but it will appear belgw that very great advantages
frequently arise from startingt ‘vut with 2 properly chosen form
of vorbal statement and, the equation related thereto. In
many such problems, we(taust start ‘out with some one form of
verbal statement; wesfhén use that as a basis of setting up the
corresponding cqugﬁb@)n, pass from that equation to another
correaponding oppgiivalent equation, and only then discover an
alternative verhal form of the original statement. In essence,
this is one f;fj:i'e great achicvements of the mathematical process;
it ena.blc.‘s\:us; by symbolic operations, to diseover unknown verbal
relationy bguivalent to or implied by a given verbal relation.
Weican, of course, plot a chart of Equation (5) which is the
{ﬁéciﬁc case of Equation (4) when & i3

¢=23 (5)

To plot, axes of measurement are again chosen; the horizontal
axis will again be taken for measuring ¢, but now the vertical
axis will be used for measuring é rather than e. Seales will need
to be chosen again; though the old scale of Chart 3 can be
retained for ¢, the scale for ¢ will differ from that for e. Fquation
{6) has a locus that is a straight line and the line can be located



M\ii}ebresentation to the other unless w,
\/ in studying the relation to ¢ of on

16 RUDIMENTARY MATHEMATICS

by plotting two of its points such as (0, :-3) and (4, 3):?:- The
result appears in Chart 5. The line is horizontal, at a distance
3 above 0Q. .

This chart is a graphic representation of our assumplion, and
just as good a representation as Chart 3. The two repm‘:seflta-
tions differ from each other because they show the velations

A
C . -
¢\
3 Qe —O~0
[ O
+*0)
~N
\
ek N
&
% 3
< 'Qt:
b O
. N
Q
)
X\
\
L

0 A& e 3 4

CH}&'i"-S.—--—lﬂ‘ixed average-cost funcijon (propuortional total st .
"\‘.
)

he‘ﬁ%n different pairs of variables, Churt 3 hetween g and c,
Obart. 5 between ¢ and ¢ There is no reagon to prefor one
e happen 1o be morc interested
e variable, e.g., ¢, Lhan of the
ely satisfactory graphic repre-
the specified producer. Once
ed the other, but having both

other.  Either chart is o complet
sentation of the cost situation for
we have either chart, we do not ne

£ As before, students Tamilisr w
Equation (5)
We giv
kind of

; ith analytie geometry will know that
1s represented by g straight line and thag the line is horizontal. -
8 1o proof of this, hut other students may redyes their doubig by the
lesting supgested iy footnote 2, p. 10, )
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“charts may be exceedingly helpful to an understanding of the
faets.*

When two charts are associated as are Charts 3 and 5, through

the fzet that one of them is derivable from the other—in this
case, Chart 3 is derivable from Chart 3 because, for each g,
Z iz derivable from ¢ by a definite rule implied in the definition
of averuge cost—and thus merely represents the other in =
diffevent. form, one of the pair of charts is called the ¢maged
of the other. In some problems the rule of passing fromaa
chart o its image may be much less simple than that uscd.fléfg;
here tha rule is merely that the ¢ of Chart 5 is the ¢ of Chart 3
divided by g. We shall find below numerous instanqg’s"df image
charts, and their contribution to an understanding of the [acts
under study will often assume high importance:
- The eost. situation indicated by the assumpt'{on under examina-
tion i the forcgoing analysis—the assupiphion (1) that total
cost 15 directly proportional to output, ot §2) that average cost is
congtant—is generally deseribed In\geonomies by the term
consiant cost. Manifestly, this mans constant average cost;
the term might advantageousht“have included the adjective
“average,” or the qualifying)‘phrase ‘“‘per unit.” Once the
aceoptod significance of thesterm constant cost is known, the
term should t-hcrea-ftel;{b} used in cconomics as thus defined:
Constant cost meansgenstant average cost. Tts mathematical
represcntation appéars graphically in Chart 5, symbolically
in Equation (B)Cor more gencrully in Tquation (4). Because
of ihe imagejielﬁtionship, an slternative representation is that
of Chartn8 or Tquation (2) and more generally BEguation (1}.
Which foish of representation js to be preferred depends upon the
iml;;g&iéa,te object of inquiry, as will appear in later discussions.

)

in 2 problem loss simple then that under study, this possibility of getting
sevoral supplomentary views by using difierent graphic representations, a
first chart and its image or several images, is of great practieal importance.
It is like having photographs from various angles of a single complicated
landseape.

2 The student of elementary statistics 1s familiar with the ogive, or cumula-
tive frequency graph. The ogive s manifestly merely an image of the
ordinary frequency polygen. The rule of pussing from the polygon te the
ogive is the rule that successive [requencics be cumulated.
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CHAPTER 1T
GRAPHIC ANALYSIS: CURVES AND EQUATICHS

N\

In Chap. I, the graphic methed was applied to the siniplest
case—an assumed cost situation for which both total¢dest and
average cost are represented by straight lines. .TJ;E present
chapter extends the method to cases in whichwglirves sarise
instead of straight lines. D

Fixed Total Cost. Not beecause of its .‘p}actical economic
significance, but because its study will aid @reatly in certoin later
stages of our work, we now examir}ezxﬁ‘"sec-ond and different
assumption concerning the relation, ofledst and output. Assume
now that the specified producer has's fixed—we avoid the word
“constant” to minimize danger’of confusion with the proveding
case, called “constant cost’s in economie theory—taotal cost no
matter how great his ogt';iﬁt.‘ Real economic life, nearly all
its productive operations*involving the application of certain
productive fa,ctors. Hhat tend to vary with the rate of outpuf,
does not readily 3@131 instances of this sort. We can, however,
visualize a nof eln\tirely unrealistic case. Suppose that a workman
can, on anyand every day he wishes, readily secure employment
at his trpd?ka,t $7 per day. He chooses not o take such cemploy-,
ment?,@fb to engage in door-to-door selling, on commission, of a
bookien the history of medicine. His output ¢ is the numier of
mﬁ’{}, books, sold per day; his total cost ¢ is fixed at $7 per day.®
. st, the doing without revenue from one operation

N ! Btrictly, this states the ease with unnecessary rigidity; ingtead of saying
‘no matter how great his output,” we might have said *for all umounts of
output, w1t.hin the range under study.” This is a point that we neglect here,
a3 we consider total eost, fixed for alj values of ¢; but the point will be raised
agamvlater: where it has praetics] importanee {p. 323,

' “'e_walvc here any costs, or Savings in cost, involved in differcnces in
a-ttractx}reneffs or irksomeness of the two types of work. In all discussion
of cost in this boolk, cost is taken in the sense of the pecuniary expense of
Productmn a‘fld _not in the sense of those intangible sacrifices that often .
influence an Individual's appraisal of the “cost’ of doing some particular
&t or seeuring some partieylsr henefit, -

18
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in order to undertake a different operation, is a simple and
impesfeet illustration of what economic theory calls opporfunity
cost.

The symbolic representation of this cost situation is

c=f=7 )

where f iz a constant, fixed at $7. Both ¢ and f are, of course,
mensured in unils {dollars) per day. Chart 6, showing peoints. O\

7\
o o o o o o o o
N
\:..,>‘
5 B \
':1)\\.l
n \ \‘
i .x:;\ :
’\\
i L N _ ¢ 1 ] i 1 1
0 i 2 ("'"’ 3 4 5 6 7 ] Q

Cai}su"r 8.—Tixed total cost, discontinuous case.

alcng a h&xmntal line, is the graphic representation of the
pmtlu”c—f g ‘cost for various q.

oW s?bout his average cost? Using the general definition of
ax‘\r@ge cost given by

(3)

o>
1l
ey

wo get from (6)
| 7
¢

To secure a graphic representation of Equation (7), we need pairs
of values of ¢ and #; such pairs, for selected whole-number (called

= =

@

W 15,
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integral) values of ¢, appear in Table 2. The table includes
no entry for ¢ as zero: if he sclls no book, his total cost for the day
ig still $7, but his average cost must not be stated as 7 + .
We observe further thut the table includes no fractional values
of g; the case under discussion obviously cxcludes fraciions,
beeause no part of a book can be so0ld separately.?

Tapie 2.—VALUBS OF & ASSOCTATED wIrH SELECTED VALUES OF ¢, $BR
- : Lgrarion (T)*

~ AW,
a £ g PN N
! 7 4 RO SR
2 3.5 5 A" T1.4
L
3 2.33 6 - N\ 1.17

* Unite: for g, I bools; for 2, dollars per hook, O

Chart 7 shows points plotted to rep égont the several pairs of
values given in Table 2. These poiliég)are not joined by a curve
or by successive Hne segments hecglﬁsé, as noted above, fractional -
wvalues of ¢ have no signiﬁcar;c’(:"in this problem, The chart,
however, inevitably suggestsisuch a curve to a mind at all
aeeusiomed to graphic sta?t-istics; visualizing such an imaginary
curve is a perhaps uncgugious step in our reaching the two impor-
tant infercnces fropd“fhe chart. Those inferences are (1) the
points drift downward toward the right, and (2} this drift becomes
increasingly gradual as our eyes pass to.the right.* The fact
that the peings do not lie upon a horizontal line, like those of
Chart 6, means that, although total cost is constant, average cost
is not(Cenistant. This faet is also rovealed symbolically by

3Di}ision by zero is mot a pecmissible mathematiosl operation.  Omne
sgm&times acquires the mistaken notion in clementary algebry, that such a
...\: riatio as & + 0 has a mesning and indeed, if b is some constant other than
N/ & “cquals infinity.””  We mercly assert now that this is wrong, that the
noun “infinity ™ is an abominstion to el who wish 1o think carefully in
mathematical terms; and we must reserve further dizeussion until the
doctrine of limits is devcloped (p. 41).

* This is the sort of situation that vields what elementary statistios ealls a
discrete series.  For example, if the workman sold books, over a period of
many days, we could tabulate a [requency serics showing the number of days
in which he sold no book, one book, two books, ete.  Such a geries would be
dizerete: fractional valies of the variate ¢ would be without meaning,

8 This second observation is oquivalent to saying that the curvaiure of

the curve, if in fact the eurve were drawr, js of the eoncave-upward type.
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Equation (7): the appearance of g in the right side of the equation
forces & to vary as ¢ varies.

In order to get rid of the limitation, imposed by the fact that
the unii of sale (output) iz indivisible, and thus be able to
dispense with the treatment of our plotted points as isolated

C
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Cu }ois?f—.&vemge cast Tor fized total eost, discontinuous case.

or disegebe, eonsider a modification of the foregoing illustration.
Supznise'the salesman is selling fire insurance which, though he
Zedrds his sales in a unit of $1,000 of insurance, can (we suppose)
be'sold in any amount, Here the unit of output is divizible, and
we are warranted in considering fractional values for ¢.  Iiqua~

tIn actualily, of course, perfeet divisibility is not possible—all conceiv-
able frantions eatmot be considered. Thus, the smallest unit in this case
might be $10; the mies of the company might prevent sales in any amounts
except tmultiples of 10. In every actusl economic problem, some such
Wlimate limitation on divisibility is imposed by practical or technieal con-
siderations.  But where, as i the case now supposed, the reported unil can
be divided into tolerably small fractions, we treat the variable ¢ ag truly
tontinuous, 7.e;, perfectly divisible. ' -
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tion (7} still holds, ¢ now being expressed in the unit $1,000,
To plot the equation, we caleulate the palrs of values in Table 3,
The corresponding points—except (0.01, 700) and {C.1, 70),
which are so high that convenience of seale dietated their cmission
from the chart—are shown in Chart 8.  Here a continucus curve
hag been drawn through the plotted points, because we fecl
justified in regarding g as capable of taking on any valug, frac-
tional to any degree of fineness. O

E .\:\’
\

30

ALl

il

NSl 23 VR &7 3 |

o CHART 8. -Averuge cost for fixed fotal cost, continuous nase.

~ ) Examination of the chart, or the table, shows that the plotted
\/ points are much closer together, in the sense of lateral (horizontal)
distance, at the left than at the right—the fractional values are
ta,kc.n ﬁner and finer as we pass o the left, This is because &
preliminary ‘testing of integral (whele-number) values for ¢
showed that the curve changes more rapidly as g changes for

small values than for large values of g, i.e., at the left than
at the right.?

1 o s ) y
: l_here 18 no trustworthy rule to guide us in deciding what fractions to
substitute, where along the range of variation to substitute fne fractions,
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The curve of Chart 8 is n complete graphie representation of
Lquation (7) and leads again to the two important inferences
reported above in examining Chart 7.

TiBL® 3. VALUES OT ¢ ASSOCLAIBD WIrH BELECTED VALUES OF ¢ FOR
Fouation (7)%

4 & g £
0.0t 700 2.5 2.8
5ot 70 3 2.33 O\
0.2 33 3.5 2 A\
0.3 23.3 4 1.76 ™
6.4 17.5 4.5 56,
0.3 14 5 ’ 21_4
0.75 9.3 6 A\ 117
i 7 7 71
1.5 4.67 8 N .88
o = ny
7 3.5 9 R 0.73

* Tinita: Joe g, 51,0004 Tor g, dollars {of cost) per S],QO‘O'(Of’ soles). .

Composite Total Cost, First Exa;tgpié. We pass now to & third
assumypiion governing the cost of our producer: His total cost is a
compesite of two parts, one fixed and the other directly propor-
tionzl fo output.t His qg:a@posite total cost ¢ is thus made up
of two parts ¢; and cp,¢Where the subscripts f and p distinguish
the fived and variable%artsﬁ From Equations (1} and (G)

\ ¢, = kg  and er=h

and how it 'AQ,"\B;:ITE. where to substitute coarser fractions, and how coarse.
Experience%&ches, snd woe presently leam fo ealeulate enough pairs of
valucs, jh Warious portions of the range, to enable ug to draw the desired
CUTV Y procisely as we wish. Inany parlicular ease, some experimentation
ﬁi}; be necessary; and we may be obliged to calcilate and plot some addi-
thapal, and intermediate, points when those already plotied appear inade-
quate to guide vur drawing of the curve. Tn some parts of the curve, it may
not be necessary to plot for all integral values of ¢. )

1 Thig agsumption, unlike those which have gone before, more neatly
represents actual situations, of a very simplo type, in economic life. FEwven
here, however, earefil economie reasoning brings out questions ag to the
likelihood of such a law of cost prevailing for any congiderable change in g.

2 We usc here “total cost” to mean ihe entire cost for output g and the
term “ecomposite”’ to indicate that it is made up of parts. Eeonomies some-

times uses total in the sonse in which we use composite, and the usage
specified hore should be kept in mind as we procced.
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where k corresponds to the f of Equation (6). Hence, as
€ =¢Cy + €5

the symbolic formula for this new agsumption is

c=Fkg+h (8)
where k1 and h are constants. The units for ¢ and ¢ are sup-
posedly known: let them be 100 tons and $1,000. Q

In order to render this general formuls specific, definite

. L £\ =
numerical values are assigned to & and h; although e, fght
choose any numbers for thiz purpese, it is convenient forillustra-

N

tion to select RS
k=3 h=16 R4S

and the equation becomes
AY;
¢=3g416 7> 9
g+ 16 ¢ (9)

This is the equation of a straight live] and it can therefore be
plotted by locatling two of its paints.! One such point, easily
caleulated and plotted, is for g gbro, for which cis 16.2 A sccond
convenicnt point is (4, 2&);’" “These two points are plotted in
Chart 9; as we regard g eupable of continuous variation and
' That the equation gixds b struight line will be known to thoge familiar
with elementary an Iyt\l‘(}s.éeom efry, How js this known? It is known by
the facts that each }i}ia. le g and ¢ enters the cquation only to the first power
and there is no térm of the cquation involving the product ¢ times ¢. In
technical 1.crfr1i'q010gy, such an equation is of the Jirst degree, or lnear, In
¢ and . / i we omit proof that the locus of Tquation (9) is o straight
ling, but,suggest that the student test it in the manner indicated in footnote
2, p. }ﬁ\ "/
E&I}Uaﬂy, taking ¢ zero gives ¢ as —1&4,
gbft.ga}.necl by taking ¢ and ¢, respectively, zero, are called the intercepts of
. \ tlhe line: they give the distanee from € ot which the line cuis the axes OQ
\ yand OC.  The cintercept is 16, and the gintereeptin —184. Tlotting these
two points completely determines the straight linc. As, however, the
g1mtercept s negative and the line therefore culs the 06 axis on the 1eft?0f a,
and as economic considerationg imply that the chart should not be drawn
left of O, we do not use ihis second intercept ¢ = —1641n locating the line.
Tnstead, as shown above in the text, we take some other point, a point for
which ¢ is pesitive. .\Tc\-'ert.helc:;s, if we had extended the O(j axiz 10 the

left and pl?tted the ¢ intereept as well ag the ¢ intercept, we should have
fmmd preeisely the same line as thut detormined by (0, 16) and (4, 28).
lhere is only onc : ’ .

line representing He H ) : , ’
. i T Lquation (9) no matt re
used in plotting it. 9 atter what points a

These values of ¢ and ¢,
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therefore of taking on fractional values as well as integral
values, a continuous line is drawn through the o points. This
line is the graphic representation of the costs of the producer.

The Tins shows that (1) the lowest cost (ignoring the negative
portion of the chart, purposely not plotted) is 16 and appears for
g zero, (2) the cost increases as we pass to the right. Both of
these {acts could be inferred from Equation (9), fact 2 by noting
that ¢ s multiplied by a positive gongtant, and fact 1 as a neces-
sary corollary thereto. The
chart i# therefore merely a C
different form of representa- 30
tion, leading to no inferences
not derivable from the
equation.

The location of this linc 20
could be described otherwise C
than by specifying the two
points {5, 16) and (4, 28), e.¢., {0 |- ¢
by specifying (0, 16) and the I\
inelination of the line, or by .”
specifying (0, 16) and thesy™ G
slope of the line. The }EAst"
of these possibilities is werth 1 ¢ 3 43 Q
examining for the i{gh’t it Cmamr 9.—Totut cost a comporite of a
throws on & pl‘()ble‘m reated fized and a propertionsl element.
below. Charty ¥ reproduces the line as in Chart 9, but here a
Supplemcnt-a.r,\i TBorizontal line has been ruled through B, (0, 16).
L is any powdt (g,c) on the line B4, but cannot be (0, 16). The
angle aglefween BH and BA, is the inclination of the line BA,
and fak '« is the slope of BA' Using the definition of tan «
(pdge 13)

4

N
2\

ML
BM

t Tn order that the present analysis shall be valid, the seales must be chosen.
s0 that a unit of g, 100 fons, is measured by the same distance a5 a unit of ¢,
$1,000. ‘This was not essential for the purpose of Chart 9, and there the
scales were not chosen with units of g and ¢ equal, In clementary statistics
we frequently use scales thab do not represent the two units, one for each
variable, by an identical distance. An illustration of this appears in Chart
L. Inorder, however, that the slope of the Yine shall work out as in the text
herewilh, the seales must represent the two units equally, as in Chart 10.

tan a¢ =
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But, as
BM = ON =g
and
ML =NL—-NM=NL—0B=¢— 16
we have
c— 16
fan & =
AN
and, as by Fquation (9) \
¢ =3¢+ 16 \'\'\\
tan & = w —_ 3 "‘. \/
g N

Hence the slope of the line BA is 3, and this 4 Manifestly the
multiplier (eustomarily called the coefficient) Of\é»i}.l Equation 9.1

We turn now to a study of average cost forpthis producer. By
definition of average cost {4,

#%7
W

R\ S
C = -0\
’Q, N/
and, from Equation (8) &N
IS (10)
" g q

' _ Q
and, in the specifie qz%se}from Tquation (9)
St 16

£ ) 3 ) 11
PAS g T q (1)
PN
1 This i NBH‘BI‘}II fact. If we start with
\\, c=1lg+h (8

a sirqﬂg} analysis would show that for
represented by @)
P

wJ .
\\) » Slope = tan g = £ (the ¢ intercept)
/ T

this general ling (its inclination being

<

—h

i

For any 2quation of o straight line, giving the dependent variahlo explicitly
28 an algebraic funetion of the independent variable, the slope of the line
(p_lotted always with the units for both variables talken equal) is the multi-
plier (generally called “eoctlicient ) of {he independent variahle,
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C

O
?]U _E N {\
: ©
: O
6 2
PO
: N\
S
. & ¢ &/
SO
3
H o ope
Sl
“‘\*& :
2\ .
) :
¢ .'\ v .O
ok O 2
o 10 =
O o
{,.\(, '0.
\”' Q.
.\\ O'Oo
N\l °
Lodd g1 .

|
1.1
g N 5 w0 (0 5 10 []
Cuart 10 —Inclination of line of com- CHART 11.— Average cost for composite
posite cost. total eost shown in Chart 10, -
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To plot Equation (11), pairs of values of ¢ and & are nceded, and
they appear in Table 4, The points arc plotted in Chart 11,
and #s ¢ is regarded capable of taking on all values, a curve
is drawn through the points.!

TapLE 4d.—~—VATTES OF £ A3SOCIATED WITH SELRECTED VALUES F ¢, FOR
Egratiow {11)*

q g g & N\

—_ _
0.01 1,603 1.5 IERS)
0.1 163 2 ay
0.2 83 3 A 0 B.32
0.3 5.3 4 AN 3T
0.4 13 5 R 6.2
0.5 85 6 ; 5.67
0.75 24.3 T N .29
1 19 | RN 5

e .

% TInitz: for q, 100 tonz; for &, $1,000 per 100 tum“ 3

The chart is the image of C!‘ggx-ft 10. Chart 11 shows {hat (1)
the average cost doclines as we pass to the right, as g increases,
and (2) the rate of this dedline beeomes more gradusl as we pass
to the right. These are precisely the zame inferences that we
drew for the case of gproducer with constant total cost (page 20);
whereas, for a 200 cer with total cost directly proportional to
output, we found (page 16} that the average cost curve was a
horizontal Jifne "the elevation of which above the OQ axis was
equal to,the proportionality factor [3 in the illustration on
page 18,61 k in the general case of Tquation (831,

‘\:’\’écnn, in fact, regard the ¢ of Equation (11} as made up of two
parte. Firstis the constant part 3, due to the portion of total eost

tlmt is di‘rectly proportional to output. Second is the variable
> part {variable beeause it depends on q) 16/g, due to the portion

of total cost that is fixed at 16. These two parts could be
plotted separately, a table of pairs of values being needed for the

" For convenience of seale, the first five pairs of valucs in Table 4 are nob
!ﬂnued. .I\.O J.Ge that no entry appears in the table for q zero; this would
involve division by wero, ahout which see footnote 1, p. 20. In entering

fractional values of g in the tahble, fractions are taken closer together for
thazt;art of the curve which changes direction more rapidly, see footnote 1,
p. 22, .
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second part, as it is variable; the two portions are shown, except
for the high poinfs at the left, by the dashed hne and dotted

curve of Chart 12, To get
the =olid curve of the chart,
which is exactly the same
as that of Chart 11, the two
portions are added; for every
vahie of g such as ON, the
two ordinates NL and NM
are meagured and added to
get NH. This is precisely
equivalent, subject to acou-
racy of measurements, to the
additicas actually performed
in getting the ¢ of Table 4.
Thusg, graphically in Chart 12
ag well ag symbolically in
Fquation (11), average cost
for this producer appears
manifestly as composed of two
parts. One is conzlant (hori-
zonta} straight line) and due
to that part of tofal wst
which is dircetly prop r(wnal
to oufput; the othelis vari-
able {the declmmg\mrr\*e, con-
cave upward) ad due to the
fixed clomentnif total cost.
Before Qﬁsmg to a fourth
as&»umpblpn, we can helpfully
dwell“briefly upon some ir-
I tzmt economic implications
of the third assumption. The
foregoing analysis shows that,
whenever total eost is a com-
posite of two parts, a fixed
part and a part directly pro-
portional to output, average

cost is also a composite of two parte.!

C

1‘U~ Q

1

g '8

CHarr 12.—Separate elements in com~
posite average cost of Chart 11,

That part of average cost

! Again the distinetion hetween “gomposite” and ‘total” should be
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corresponding to the fixed element in total cost is variable, and
its variation incvitably takes the form found above—saverage cost
declines as output incrcases. That part of average cost corre-
sponding to the variable (proportional) clement In 4utal cost i
constant, and ifs amount is inevitably equal to the proportionality
tactor [the coefficient of g in such an equation as (8)1.

Manifestly there is some value of ¢ for which the tvo parts of
average cost are equal. This value, in the specific cuso Tépre-
sented by Chart 12, pertains to the point & where #:-?3:{ “dotted
curve (the average-cost image of the fixed element in<bti¥ cost)
cuts the dashed line (the average-cost image of thepreportional
element in tofal cost). In the specific numerital yiliustration
represented by Chart 12, the ¢ for ¢ is 164 j}s\%ﬁe general case
of Equation (10), it is /k. To the left of Gothe dotled curveds
above the dashed line; to the vight of G, ¢he reverse is true. In
other words, to the left of ¢, average c%‘fﬁ}lue to the fixed element
in total cost exceeds the average sost” due to the proportional
element in total cost; to the right (b G, the reverse is true.

The portion of cost that defends upon output, the variable
portion of total cost, is eallad Prime cost; the portion of cost thab
is fixed, which is thus infependent of output, is ealed supple-
mentary cost, or sowm@imes overheqd cost.! The average cost
incident to supplementary (overhead) cost takes the shape,
although the gehéral dircction and degree of curvature may be.
different, shown by the dotted curve of Chart 12. The average
cost inciden® Pt prime cost may, however, assume a more com-
plicated,@;;m than the dashed straight line of Chart 12; its form
depends@ibon the way in which prime cost depends upon cutpub.
On],%if' prime cost depends upon eutput according to the simple,
andh rather unrealistie, rule of direct proportionality specified

(Y our third assumption does the corresponding average cost
\ 3} “appear as a horizontal stralght line.

noted: the former refers to m
latter refers to the aggre
rost.

' These terms g

erc combining of the two clements of cost, the
gate eost for output ¢ as distinet from the average

S appear to have very simple definitions in thig illustration;
but, for eost situations more realistie and less gimple than that specified
})y our third sssumption, the signifieance of the terms hecomes increasingly
ntricale, and often &ppeary obseure to the student. ‘The present iHustra-

tion merely indieatos (he distinetion, in itg simplest terms, between prime
and supplementary costs, ,
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Fipaily we infer from Chart 12, since the solid eurve repre-
senting composite average cost appears to get closer and closer
to the horigontal dashed line as we pass to the right but can
gever drop below that line, that the producer can, by making
his outut larger and larger, bring his average cost down nearer
and nraver to a fixed limiting level [3 for Chart 12, & for the
general ease of Fquation (10)} This is the first suggestion of
the notion of a fimdf, to which more specific attention will be{
given in the next chapter. O\

Composite Total Cost, Second Example. Now let the eost
situation of the specified producer be subject to a fourth, and’still
more complicated, assumption. Buppose that his tqﬁ:a:’l"cost- is
made 1y of two parts ¢; and ¢,, where the subsctipts f and #
indicste fixed and variable, and that these parisare represented
svinbaiically by Y,

PAP

er=1f o\
¢, = ag® -+ bg\®
where &, 6, and f are constants, '.%.:qu" ”
s =@ o
the general formula for thig cahu;e is _
\<c"; agt + by + 1 (12)

The reuder may wquire how the formula for ., in terms of ¢, is
known for the sifpposed producer. We are assuming that the
producer, ;a.{‘tt&)"ugh he might have used the erpirical method,
finds his-forfaula by the a priori method, that he works out the
formufarom known facts about his system of production and
the “gttendant costs. Thus, presumably he knows that part
i Viis total cost, represented by f, Is fixed regardless of output;
phrt, represented by by, is directly proportional to output; and
the rest, represented by ag® 18 directly proportional to the
square of output.

Just how, from a technical or organizational point of view, an
eloment of cost of 1he third sort, proportional to the square of the
output, can arise in practical ecopomic lile may at first bafle the
student. Without attempting to eatalogue possible cases, we
suggest only one: this may rvemove the student’s doubt that a
cost of sueh type could exist, Suppose that, for a limited range
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of outputf, the selling cost per Lm.'%t- of & pgtented z:,rtlcle Just
being introduced into consumption is proportional to the \rGIU}ne
sold; in order to push sales of the novelty to an ext-gng securing
some volume g, the advertising and other sales expe.nsllture per
unit sold is some constant ¢ times the volume ¢q. The total

C

100

50

4 ]
1 L £ ] I 1

~

0 4 .{ilﬁ;‘ 5 3 RTINS TI|

CEART 13.-—Compdsite total cost with three clements: fized, proportional, and
sy Slependent on second power of oulput.

selling cost#DEa units would then be' ag?,  3f total manufacturfng
cost talgc\s}ﬁé form indicated by the assumption in the preceding
sectiompbiz., by + f, total cost, including selling and manu-
fagthring costs, would be as given by Equation (12). Out-p.ut,
ey, production, here includes selling as well as manufacturing
"\ eberations, 2
\ fBuch a formula for sales cost would
apply only for a limited range of possible
chosen outside this range, a
units in the early phase of P
formula for sales eost might
within this supposed rarge,
* The student will understand,
i herm as ag® might oceur in the
fact, economice theory suggests (h
snd perhaps other elements,

» 48 suggested above, presumably
values of ¢, If the objective wore
much smaller, or & much larger, mumber of
opular acceptance of the novelty, a different
#pply.  We are concerned only with some ¢

of course, that in modern industry SU_C-h
cost forrula for manufacturing alone. In
al a ihird element, involving g2, may enter,
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To render the case specifie, we assume a, b, and f are 14, 3 and
21, respectively. The equation becomes
¢ = 15¢* + 3¢ + 21 (13)
The corresponding points, Chart 13, are plotted from the pairs
(with some omissions) of values shown in Table 5, and the
plotted points are jo_ined by a curve, becausc we regard g as
eapable of taking on fractional values.'

TapLs 3 —VALUES OF ¢ AssocIaTep WiTH Sercwrien VALUSS OF ¢, FOR
N

Equamon (13}* 2 AN

1 0N
G ¢ | g C 4 ™
0 21 “ 10 D
2 27.8 . 12 £\\85.8
4 36.2 - 13 ’03.8
5 46.2 ‘ 1o N 102.2
3 7.8 | 15 ¢ 1h

I \ N

"

# Units: for g, one dozen arlicles; for . 3100,

The eirve shows that (1) some costiabpears even if output is
zero, (2) total cost rises as outputl fiﬂéreases, and (3) total cost
rises ab an increasing rate as eifput inereases. Inference 3 is
implied by the fact that thehrve 1s concave upward.?

Before proceeding to the \eorresponding average cost analysis,
a more detailed graphichstudy of Equation (13) is informing,
For thiz purpose, wese the scheme adopted in Chart 12 for
plotting separatqu’\thé two terms of Equation (11).*  Astheright

LTor the use, t‘(;‘\.b:a made of this chart, the seales need not be chosen so
that both unitéate represented by the same distance. The earve i plotted
only bet\\-epﬁ\g aqual to zero and g equal to 14, becausc we are agsuming that
the formfits for cost, particularly for sales cost, holds only in that range.
So far(3® the mathemadical properties of Fquation (13) are concerned, how-
eder, wo could prolong the eurve beyond the limits of this range. The
phydically possible fractions, of course, are multiples ol ¥z of the unit used
for ¢ in the chart. i :

2 Tnference 3, 03 stated, invelves the word rate. The rate concept will be
developed more precisely (p. 81) and will be shown to be associated with
the curvature of the rurve.

* A gimilar attack might have been made upon Equation (9), but was
omitted. Thus, a chart corresponding to Chart 9, but showing separately
also the curves due Lo the two parts 3¢ and 16, would have been found.
_E&Ch of these scparate eurves would have been siraight Iines, .the first
imclined, the second horizontal.

QY
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side of Equation (13) contains three terms, we might plot cach
one separately, securing such a figure as Chart 14, "'he constant
term 21 yields a horizontal straight line, ithe proportional term
3q yields an inclined straight line, and the second-idegree term
1¢g® wyields a concave-upward curve.! The solid curve of
the chart, the same curve as that of Chart 13, eould be plotted
by adding, for each value of g, the three ordinates of the three
elements, viz., the dotted curve and the two straight lines8ee
page 29). A
¢\

C '.’\

100 . p “( 2\ Y /

F
2

- ‘—. - O .o--cﬂo..'.
&g::xéa-'_------';’"""". A ! o I
0ot 4 g B ST I 14 14 {

, \.\kﬁ)& RT

14.—feparate elements of composite cost shown in Churt 13,

'.\.jﬂ'.Ano.ther 'pos?sibility eongists in breaking the right side of
~K Lquat'lon (13) in two parts, e.g., the sales cost 14¢? and the manu-
N/ facturing cost 3¢ + 21. This yields the dotted curve {the same
curve as that dotted in Chart 14) and the inelined line of Chart 15-
Otherwise, the right member of Tlquation (13) can be split in
two parts, fixed cost 21 and variable cost L4q® 4 3q, yielding the
horizontal line and dotted curve of Chart 16. Tn ,eajch of these
charts—14, 15, and 16—addition of the ordinates of the element?

! The student is now Familiar with 1 I !
ith the plott: lght 1 ould
draw each of these readily. o the oo gt lincs o o

. Flotting of the concave curve, of course,
Tequires a table of values, bt thig ja not reproduced here .
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100

30

4 1
0 7 4 6 8 A0 12 4

C

100

L

0 . 4 5 o0 1 1 14(Q

CEART 16 —Composite cost of Chart 13 sepurated into fixed and variable

portions.
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(eurves or lines), for any value of ¢, gives the corrosponding
ordinate of the curve of Chart 13 by precisely the method of
addition used in combining the dotted curves and line of Chart
12 1o vield the solid curve thereof.,

Chart 16 shows fixed cost the same as variable cozt at point
@, where ¢ is approximately 5.2. Left of &, fixed cost cxceeds
variable cost; right of G, the reverse is true.  Chart 15 shows no
corresponding intersection of the sales cost and manufactuing
sost curves, because they interseet outside the range, ending'or
g at 14, to which woe have restricted ¢. I\Iathematic-a.lly'ﬂ’te\re is,
however, such an intersection; it occurs at some pointg H (not
shown in Chart 15) for which ¢ is approximatoly g0 2. Left
of that point, sales cost is less than manufacturing cost.’

The average cost, corresponding to thelgdneral formula in
Equation (12}, is

.\\.’
B 71
i=ay+ b +\x§ (14}
and that for Equation (13) is O
P-gts T (15)

The curve representing, Equation (15) is plotted in Chart 17
by the use of u tablennot reproduced, of pairs of values of g and &
Unlike any of tHe'clirves heretofore shown, this curve is inclined
downward in part of its range (the left part) and upward in the
vest of its% réhde (the right part). At some intermediate point,
for whigh(g. Appears Lo have the value of about 10, the inelination
shifts ftom downward-to-the-right to upward-to-the-right. (In
ordersto bring out this fact, a light horizontal line has been drawn

2

¢ \ v Tha q for G i3 obtained by setting -

Yt + 3¢ =21
and rolving for ¢. Likcwise, the g Tor H is obtuined from
Hgt =3¢ +21

Ifl e'a,‘ch case, the nepaiive solution for ¢ is discarded; it has no. GConomie
significance.  The sludent reealis from elemnentary alg(;bra, that the solution
of .q}mhvun equation ag the first of these is secured by fhrowing it in the form
¢* 7 159 = 105, adding (19)? 10 each side, and then taking the square roct
of cach side.  Or, the same resull. is seoured by using a formula designéd te

give st once the solution for ¢ of an e i
n equation of the t 2 1§ e =0,
where a, b, and ¢ are constants, ype ag® + b +
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through the lowest point.) This peint is a minimum of the
curve, and we shall learn (page 110) how its position, the cor-
responding value of g, can be precisely determined. For the
present, approximate location of the point can be obtained by

C

25F
Oy
20k \“\a '
N
&Y

15f v

K7

x\‘
10t
ST
0 2 4 B s 10 12 14{

Cn 'E"TY.’—Avera,ge eogt for total-cosl [unction shown in Chart 13,

Substi‘gm'ﬁxg in Equation (15) fractional values of ¢ cloge to the
appdrent minimum point revealed by the chart. Thus,

\}?r g: 9.9 10 10.1 10.2 10.3 10.4
fig: 7.1212  7.1000 7.0992 7.0088  7.0938 7.0092

where eomputations for & have been carried to four decimals to
secure the needed precision. These results suggest that the
minimum oceurs for ¢ somewhere between 10.2 and 190.3, but
10 eut-and-try method such as thig can give us an exact and
unambiguous determination of the minimum.

Again, a graphic representation that shows parts of the right
member of Equation (15) separately is informing. For this
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purpose, the parts chosen are

21

q

These parts correspond, respec-tively, to the wvarizhle part
¢q® + 3q and the fixed part 21 of total cost.  The corresponding
curves, an upward-inclined straight line and a concave-upward
o ) N

g+3  and

25

el

15

1

oo 4 6 & 10 12 4

PN CEART 18- —Portions of average-cost eurve of Chart 17 due to fixed and vuriable
~\J portions of Chart 16,

N\

curve, appear in Chart 18.'  The curve (drawn solid) is inclined
downward throughout its length; it has no minimum, in the
sense of the minimum of the curve of Chart 17, In truth,
such a curve ecan never, no matter how large ¢ beeomes, drop
})clow ) pgrt-icular.levcl ; 1n thie ease that level is zero. But this
18 Not & minimum in the above sense, it is a limiting value, which

t A table of valyes, not reprodueed, is

. essential for plotting the cutve
The student, ¢an locate the line by finding P & o

two poinis thereof,
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tne ordinatc of the curve approaches as it declines, but can never
reach.

Addition of the ordinates of the two curves of Chart 18, for
any particular valie of ¢, yiclds the corresponding ordinate of
the curse of Chart 17, by exactly the procedure outlined for
Chart 12 It now appears that the shift from a downy rard to
an upward inclination, which oceurs in the eurve of Chart 17
for ¢ about 10.2, is due to the inclined line of Chart 18; the ,
portion of composite average cost due to the curve of Chart 18
never turns upward. In other words, the variable part of t6tal
cost, not the fixed part, aceounts for the upturn in compos'itc
gverage ooat to the right of g equal to 10.2. In still ofher avords,
it is the combined effect of the downward inclinggien’ of the
curve of Chart 18 and the upward inclination of sbe Time thereof
which produces the minimum in the curve of\Ekart 17. That
miniria: exists because the two constituenfgofaverage cost have
opposite inclinations.’ S

The eaonomic implication is that whenever total cost is made
up of twe elements, one fixed (and posifive, as in most cost prob-
lets of & simple sort) and the other involving, with or without a
proporiions] term, a positives E;‘)efﬁc.ictxlt times the square of the
putput, average cosh raush bé minimum for some determinable
gize of cutput, We rerxnafk, however, that the permissible range,
for g between 0 and\e}}%'i}l the above case, mighf not include the
minimum point of\the function. '

The twoe curdos” of Chart 18 intersect at G, for which ¢ is
approximat.elin,&z. At that point, average cost due to the fixed
cloment, i total cost exactly equals average cost duc to the
Vari&ble}elbment; to the left of G, the former exceeds the latter;
to theyright of G, the reverse is true. ‘The ¢ for G is, of course,

.»t{lé\ééume us for the G in Chart 16; this G, like the ¢ of Chart 186,
\ g Instead of Chart 18, another chart could have been provided, shfln'.-ing
the right miember of Equation (15) split into two different parts, viz.,

21
I5e and 3+ r

corresponding to AVETRZe yales cost and average manufacturing eost. The
only result would have been %0 ghift the straight line down 3 points and the
coneave curve upward 3 points. The inclination of the line would remain
the same ag in Chart 18, the shape of the eurve would'remain ag in Chart 18,
but the limiting value of the ordinate of {he curve would now Le 8 instead of
Ze10.
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of which Chart 181s an Image, represents the production situation
for which fixed total cost equals variable total cost. The cor-
responding elements of average cost are also necessarily equal,

Before leaving Chart 18, we remark, as should alrcady be seen
by the student, that the average cost due to the fixed clement in
total cost is not fixed but variable, not a horizontu! line bhut g
curve. The average cost due to the variable clement in total
cost is also variable; but its variability, instead of being. répre-
sented by a curve such as the curve showing variakis totaldost
in Chart 16, is represented by an inclined line. \variable
total cost according to a more complicated formulhothan that
of Equation (13) for, more generally, Fqualion “(12)"«}, the second
clause of this inference concerning average:¢dst due to the
variable clement of total cost would need B¢ altered as shown
helow (page 1243,

Summary, - These first two chapte;ﬁ‘k\lé:ve developed graphic.

representation as o means of rendeying visual importart charac-
teristic facis about several simpleytypes of equations. Many
naore complicated functionsl relations ean, of course, be repre-
sented by charts; alth(mgh*ésjéh representation is of suflicient
aid in the interpretations of complicated functions to indicate

its invariable use by the careful student, many properties of such -

functions can be revgalod only by the more elaborale analytical
methods to be da{g‘l@ped below. These chapters have also shown
the advantagc,qf uppleraenting one graphie representation by #
second, related fo the first in some definite way that suggests
calling thxrﬁ images of each other. Tn order to obtajn finer tools
for t}lq;a alysis and interpretation of functions that are not

doettine of limits are especially helpful. To that doctrine we

AOROow turn,

4

exceedingly simple in forr, symbolic methods linked with the

|
i



CHAPTER III
LIMITS

Previous chapters have revealed that, even {or the si mple fune- A
tional refation involved in constant total cost, such a derived fung-
tion as average cost is not constant but variable. Althoughdh.sb
case go mimple as that of constant total cost a suflicient fnder-
standing of the characteristics of both average cost andzbetal cost
can bs obtained from study of the charts, yet ma.ni-ﬂ problems
encountered in cconomic analysizs yield functi.oﬁs\not readily
or adeguately explained by simple graphic representations. In
many such cases, & derived ratio, of whiclDaverage cost in the
cases aiready studied is an example, ig~vel only variable, but
the cffective study of its variation inyGlves the eoncept of a
limit. This concept is of the highestiimportance as foundation
for analvtical methods to be deydloped later in this book, and the
present chapter is goneerned ,é];[tii“ely with the subject of limits.

We have already encoudibered the notion of limit in studying
(pages 292 and 31) the average cost function

O\ 1
\ F==
OV q
where we sa ?t:h\at, no matter how large ¢ is taken, & can never fall
ag low asyzero. To consider this ecase more generally, suppose
.\‘\\" ’ k
o i=—-+h

AN )
\”\t‘hélle % and h are positive constants. When gis 1,18 k + h; us
¥ hecomes larger, ¢ becomes smaller; but, no matter how large
¢ is taken, & is always greater than # because the fraction k/g
always has a positive value. Under such conditions, h iz called
the limit of & as ¢ becomes infinite. More generally, if for a
function ¢ and & constant h the difference (without regard to st gny

i—h
can be made smaller and smaller, and less than any previously

assigned small number however gmall, by allowing the inde-
41
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pendent variable ¢ to behave in a preseribed manner, A is ealled
the limii of ¢ us ¢ behaves in that prescribed mannor. In the
present instance, the prescribed manner in which ¢ behaves
Is that it becomes larger and larger. Thus, ¢ ean be taken large
enough so that & — h becomes less than any previously assigned
small number, '

In the forcgoing illustration, the limit was appreached as ¢,
the independent variable, became larger and larger,  In“the
bulk of this chapter, however, the functions studied aue Tatlos
involving the independent variable, the variable that o ’h}:,}es ina
prescribed manner, and these ratios approach ,a.'.e;:tert-ainable
limits s the independent variable becomes smalléryisd smaller,
i.e.,, as it approaches zero. Iere the deﬂnitioii' of Timit would
read: If for a ratio Ay/Az und a constant hth} difference (with-
out regard to sign) '

éﬂ — &k \\
Az o\

cal be made less than any previonsly agsigned small number, by
taking Ax sufficiently small, B8 the limit of the ratic ad Az
approaches zoro. ! & N :

Minimum Average Cosh® Suppose thut the cost situaiion of a
particular producer ig@efined, in terms of output and total cost,
according to the lzqul;\bh assumption discussed in Chap. II (page
31), by N\ |

' c=og’ +byg+ k. (12}

where a, Gnand £ are constants, To render the case numerically

specific ¢t the constants be chosen as 0.2, 1.5, and 7. The

equ%ig}fthen is '
"\

R ¢=02¢+ 15¢ + 7 (16)
I we assume that g can tuke on
“values, including fractions, the ¢
Here the seales have been cho,
zontally or vertically,
choice exhibits the iy
the form desired.

the value zero and all positive
urve is as shown in Chart 19.
Sen so that a single distance, hori-
represents the units for ¢ and ¢, becange this
eometric and trigonometric relationships in

' The student should
symbel (see footnote 1
"“delta times 5.7

understand that ax, and likewise Ay, is compeound
» B 13)0 Tt does not mean, and should not be read,

? The plottad, pairs of values, for ¢ and ¢, appear in Table 6, page 44.
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Choose ¥ as some point (g, ¢}, far out to the right on the curve
(reproducetd in Chart 20), and, to be specific, let H be (3, 36.7).

<> 0 g 10 [l

Cmamr 19— Composite total cost with three elements, second exam ple.

The average cost for the scale of production indieated by U_Ut'pl_l_t
] :
:ﬂ, which is 4.078 (approximately)

9 +

If the straight line OH is drawn, average cost 1 manifestly the
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slope of the line OH (sec page 13). In general, no matter where
H, (g, ¢), is located on the curve, the average cost ¢/¢ is the slope
of the line OH. Also, if « is the inclination of OH, ihe average
cost is fan e

C H(g.9)
3 A
N
£
AN
\/
o
30 Ot
AN
72>
[&
c0
15
N0¢
X’ o
&
\O
O
QN 5
{ \“:‘ .
N/ '
[] ! | 1 1 1
10
Cuarr 20—Inclination of lines reflecting average cost of points of earve of

Chart 19,

Referril;ng again to the specific location (9, 36.7) of the point
(;i:;e }? serve that the lirfe OH cuts the eurve also in another
p to the left. We infer, of course, that average cost &t
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TisLs 6—VALURS 0F ¢ AssoctsaTEp WITHE STATED VALUES OF ¢, FOR
Equamow (16}*

g ¢ a || ¢

o 7 5 ‘ 19.5
i 8.7 _ 6 ‘ 23.2
2 10.8 - 7 27.3
R 13.3 ‘ 8 31.8
4 16.2 : 9 | 36.7

h
#q in uniis of oatput, ¢ in units of total eost. " '\:\'

K is the same as at H, because OK and OH are an 1dcn’dc=a1
line and have therefore a common sglope.’

Suppose now that the specific point H slides alqg\g ‘Lhe eurve
toward the loft and takes next the position H' (8 8N8). Output
has been reduced from 9 to 8, and average e?.si\;’s now

3188 which is 3. Q'Zﬁ
A new line OH' can he drawn; it ml[ “have a smaller slope than
OH, and its inclination o wills be gmaller than @ Likewise,
GH' will wut the curve in a, sevond point K’ to the left of H’,
but K will be to the nght of K.

' We pan determine the\mtput and cost for & by chserving that g and ¢
for K musi “satisfy 7 bo’nh the equation for the curve and that for the line

OH. These cquatwnb are
N, 36.7
.,\—02q2+15g+7 and c=Tg
(sce p. 13{\11010 it appoars that the equation of a line of slope m passing
throngh® {0, 0) is ¢ = mg). Solving these “simulianeous” equations, by
BLlhatlf?.llmg ¢ as given hy the first equation for ¢ in the second, and then
‘\Vﬁl{, the resultant scecond-degree cquation in ¢, M.,

0.24% ++ (1.5 - 3—31) g+7=0

vields two values

q = 3% and 9
In sctual practice, we should probably express the coefficients of the equation
in decimals and then solve, gotting 3.87 and 9. 03 1 the two values (approxi-
mate) of . Lhe value 9, of course, belongs to H, and 339 (approximately
3.9) belongs o K, {he corresponding value of ¢ at K being 1284.5/81, which
i5 15.9 approximately. R
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In similar manner, we can take a new position 77" {not shown
on the chart), still farther to the left than H’; corrz:ponding to
this is a hine OH' having a still smaller slope (an:d therefors
representing smaller average cost} and a still smallar inclination
o, Moreover, the corresponding second point KX would be still
farther to the right than K'. Manifestly, as H moves to the
left—to successive positions H', ", ete.—average cast declines,
the slope of the line O beecomes smaller, and the ““second peint”
K moves to the right. The chart suggests that p.tesellt-ly,\in
its leftward movement, T will reach a position 1. wherathe line
barely touches the eurve in a single point: # and K copmatogether
at L. The line OF is said to be tangent to the\cifve at Lt
The inclination g of O iz smaller than the inclindtion of O for
any of the earlier positions of H (positions J:Q‘ﬂm right of L),
and thus average cost is a mintmum at AN This ¢oometricsl
representation of minimum average cost isf¥équently g countered
in texts on ceonomics, but a differe{’t, restment is presented
below (page 115). \$

The line OL is called the extreme’position of the lius OH, the
inclination 8 of OL is the mini_ﬁiﬁ:‘m value of the inclinwiion o of
OH, and the slope of OFL is%he minimum value of the slope of
OH. Corrcspondingly, g average cost at L is the ninimum
value of the average g08t at I7.2 '

The chart suggg:gts,\that cutput g, for L, is approximately 9;
careful drawing af\ibe chart on a larger scale might enable us to
estimate the ger I to one or more decimal places. But no chart
can give & oxact determination of g for the position L. For
such dgtommhination, an analytical method, e, a symbolic
tnethedy 5 essential.  Such a method requires the use of & more
poyreriul tool of analysis than any discussed above, and develop-
nagnt of this tool is the main objcctive of later sections of this

N\

e\

\‘;

_ ! We have purposely chosen the eurve so that {angency will appear in this
smple form—of K and & coming together. More com plicated lorms of
tarﬂlgency can appear; and are discussed in texts on ealeuius, : '
o Thc st-uc%ent. :;,vi!l now understand why we took Lhe ori ginal position of F

far to the rl:ght, 11t was to start out with » position {0 the right of L. Had
we started with H to the loft of L, the movement of H into suceessive posi-
tions would nepessarily (for this discussion) have becn toward the right,
and eorrespondingly K would originally have beeu to the right of 7 (and of
T) and would have moved to theleft. H and K must, for the purpose of this
diseussion, approach their common position L, from D,pposit-e sides of L.
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chapter and of the succeeding chapter. Once it is developed,
we can reiurn to the problem of the present section and determine
the ¢ and ¢ of L exactly (sec page 115).

Before proceeding with the main discussion, however, attention
can advantageously be given to another view of the situation

[

-
!

| ! 3 ! 1

1
{ \\"} 5 0 q

CHaxm 21.—Aver.s’\gf; ;cost, for totul-cosé function shown in Chart 189,

A</
at L. C-oj’resp({hding to Tquation (16), the average cost equa-
tion i N\

O F—02g + 15 +-“Z‘ (1)
AN _

afd ¥t is represented by the curve of Chart 21. Chart 21 is the
image of Chart 19 (compare a similar case, in Charts 13 and 17
of Chap. 11}, The curve is inelined downward in itg left portion
and upward in its right portion, At some intermediate peint L
the curve reaches its lowest point: there average cost is minimuIn.
The I, of Chart 21 corresponds precisely to the L of Chart 20.
Here also we can estimate g, for L, from the chart and observe
that it is about 6; but again the chart fails to give an exaet
deterraination of the value of ¢ at L. Once more, cxact deter-
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mination must await the development of a morec powerful fogl
of analysis.

Beveral further remarks ean helpfully be made shout the
findings of the present section. In the first place, both the
“examination of Charts 19 and 20 and that of Chart 21 indicate
that, as output starts from zero and increases, (1) average cost

C

+20
+15

+10

£ "\.‘ ’ - =
O 0

Yeost” fur Funetion moderately difforent from that of
Chart 19,

at first decreases, {2) presently
then increases.

reaches a minimum, and (3)
We remark now, without explaining in detail,
that this is g consequence of the form that has been assumed
f?r Equation (18)—a form that is roughly plausible, for a rela-
tively simple type of costs, from an economic point of view. Had
Equation {18} been in somewhat different form, conclusions L
2, and § might not have been appropriate. : "
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In the second place, an apparently slight change in Equation
(16) yields & “eost” eurve for no point of which “average cost”
is minimuni; but this modified form of the cost function admit-
tedly sectns not very plausible from an economic point of view,

For example, the curve representing.
e =02+ 1.6¢g -7 (18)

appears in Chart 22, Here that portion of the curve for which ¢
is negative, though g is positive, s plotted in dots, for such
“uosts’ do not appear economically plausible; in fact the poind™y,
where ¢ i& zero, and presumably a portion of the curve jusbbo
the right of that point, ecannot be regarded as econgmitfally
“realistic.”* By an examination similar to that apf;lié’d to
Chart 20, we find at once that no point of this curveof*Chart 22
corresponds 10 minimum average cost. In fat:t,’iﬁ this case,
the line OF never “cuts the curve In & second. point’”’ K.2

In the third place, consider a borderline Q@Q&} in which the fixed
cost s gero, given by PN '

¢ = 0.2¢* +. 157 (19)

and shown in Chart 23. Here, ms;ﬁifestly, the line OH always
oits the eurve in a sccond, point of intersection, that point
heing invariably at O no mabter where [T is located. Hence, as
H moves to the left, thadfink OH does approach an extreme posi-
tion, and that positign Ts precisely the tangent line at O.

The various chaphy'suggest, but do not establish completely,
m}éml conclugion about minimum average cost.

the following
Any cost Hit-,u@%hn represented by a function of the type studied

"By a .S@%t;vhat giilted interpretation of the torm rost, however, we
eould concelve of Fquation (18) aa properly reflecting costs for a particular
pl’ﬁﬁeﬁs\ﬁi stuge of production in a more complex scheme invelving other
Q?(lia,t’tons; or perhaps sich a cost formuls might apply to one ecommodity
produced jointly with one or more others. Tn any cage, as siated above;
Equation (18} does not appear very realistic as 2 oyt formula; it is intro-
dueed here merely to bring oul the pessibility of having the general formula
of BEguation (12) take a speciﬁc_[orm, given by Fquation (18), for which
there is no minimum “average cost.” .

¢ A second point of intersection would be found, to the left of O, if we
plotted the eurve for negative values of ¢ but we have systermnatically
exeluded such negative cuiputs from consideration. In any case, such
second point, would move to the left, not fo the right, as H moved to the lefi;
H and K would never tend to come together at # single point.
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above, with a total cost curve that is concave upward throughout
its course [the experimental curves plotted indicate such con-
cavity upward when a of Equation (12) is positive] and which
cuts the vertical axis above O [the & of Equation {12} s positive],

C
30

% -

15 Y

10

£33
A,
"

’;g\- L ! 1 u. [ 1 ! 1 1 i :
& 0 5 |

\\) “ Cranr 23—Totul cost similar to that of Chart 19, except for ubsenve of fixod
4 elemantg.

has some particular output, corresponding to & point L, for which
average _cost 18 minimum. The exact location of point I, can be
accomplished by the method developed in Chap. V.

Marginal Cost. We return to the specific formula for total
cost

c=02¢4 1.5g + 7 (16)

s e
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and consider it with a different purpose in mind.  We are in faet
about o consider a carefully defined change in the scale of output,
starting with the output implied by seme point A of the curve

1UQ

Cluapr 24, —Repotition of curve of Chart 19.

(reproduced in Chart 24) and then imagining output expanded
to that implied by a point B, to the right of 4.

Choose A as any point whatever, but preferably not (0, 7,
on the curve; to make it numerically specific, let it be (2, 10.8).

This point represents the cost situation for output 2. Choose B
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as some other point on the curve, to the right of A; for the
moment, imagine that B is specifieally (5, 19.5). & represents
the cost situation for output 5. Suppose the producer started
out by operating at output 2, represented by 4, and then changed
his secale of operations to output 5, represented by B, The
change in output is the increase of 3 units, and the corresponding
change in cost is the increase of 19.5 — 10,8, which is 8.7 units.
The additional output involved in his change in seale of operations
is 3, and the additional cost involved is 8.7. We may therdidre
say that the average cost of the additional 011tpu% 'the\ cost -

per unit of the additional output, is A O
8?'7: which is 2.9 \:

£

This is neither the average cost of the entlre output at A, nor
the average cost of the entire output, aRB The avorage cost”

of the entire output at A is A\
08 . O
_ %8; whigh = 5.4
and at B is! N\ .

A hich = 3.9

N\
But the averageg cc{st for the 3 additional units of output, secured
by changing the ‘stale of operations from A to B, is entirely
different from ‘either of these and, in fact, is less than cither.®

Now Suppbne that the point B slides along the curve toward 4,

that ‘rhe :Th('rease In the scale of operations becomes smaller than
the th.ee -unit increase examined above. Suppose in fact that

Q 1’T hese two results could, of course, have been obtained from the formula
r average cost, along 1he lines dJe:,usso.d in the preceding section. Such

§=02 + 15 +g ~an
Substitution of 2 and 5 for gin Equation '(17) gives the average cogt as

S.4atd " 39at R

z I.f our cost funetion had differed from Equation (16), and in a vor¥
special way, the average cost of

I , the additional output might have besd
equ‘:. t}?‘ the gener.al average cogt of the entire output at 4 or else at B; bt
saen a highly special case ig purposely avoided by our choige of function.
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B now falls at (3, 13.3); here the additional output is 1 unit;
the additional cost is 13.3 — 10.8, or 2.5 units; and the average
cost of the sdditional output is 2.6 + 1, or 2.5,

Let B move still closer to 4, taking on the succession of posi-
tiong indieated by the values of ¢ in column (1) of Table 7.
Column (2} of the table gives the corresponding values of ¢;
columns (3} and (4) give the corresponding values of the addi-
tional output [item of column (1) minus 2 units], and the addi-
tional eost [item of eccluran (2) minug 10.8]; and column (5)
gives the corresponding average cost of the additional outpuf )
fitern of column (4) divided by item of column (3}]. O

TapLy 7.—{'GMPUTATION OF THE Averacn CosT OF THR ApDiTIoN AL
Ourrvr, Wiy Scalw o¥ OPERATIONS Is Raisep rroM Two) UNirs

or Ourrur To ¢ Uxrrs oF OQurruT \
Additionsl sdditiogal Averago cost
q c } 1,(1 tm. : 1.'}{:{ of additional
outpu ;9‘:{3 output
(1) (2 (3) . {5)
5 19.5 3 N 87 2.9
3 13.3 1,087 | 25 2.5
2.5 12 0%5" 1.2 2.4
2.1 11.032 FaN! 0.232 2.32
2.01 10.82302 “\ 10,01 0.02302 2.302
N\ |

)
The final column spg;asts, but does not prove, that the average

cost of the additiafsl” output becomes smaller and smaller as B
gets closer ancloger to A; it also suggests that the average cost
of the additiondl output is approaching a definite value, which
appears ’f;('r}b"e about 2.3. When a function ¥ approaches a
deﬁnite;*\::;a.lue 11, a8 the independent variable z approaches a value
T a8 i’té']imit, yy is called the fimit of y (see pages 41 and 42).
\Tfiis limit of the average cost of the additional output, as the
additional output approaches zero, is defined as the marginal
cosl.  Strictly, the term might better have read “marginal
tost per unit,” but the term marginal cost is customarily accepted
in this sense. We may well pausc to observe that this concept

! This definition can be more strietly stated: If 7 is & function of x and if
the difference hetween y and a constant y can be made smaller than any
previously assigned amount however small by taking 2 closer and closer to
%1 9118 ealled the limit of ¥ as = approsches zu.
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appears on its face to be highly artificial: the sverage cost o
the additional output when the addilional ouiput is nil hag of
course no reality, but this is not implied in the limit concept.
The limiting value of the average cost of the addifional output, as
the additional output approaches zero, is a very veal number, and
appears in the ecase under study to be approximately 2.3, The
coneept of marginal cost, which is defined in the limit termi-

& . 2\
g O
i e\

. 1 — g

Y
D‘\\s.l 1 E 3 ﬂ?

NS

P
N

e N

\”\’w nology, ha? in truth basic significance in the treatment of cost
problems in cconomic theory;

marginal magnitude is of simil,
branches of economic theory.

aware of his marginal cogt; But

c_onditions prevail, in hig adju;

tions he acts, perhaps uneonsej

that marginal cost tends to

expand until marginal ot

CHart 25 —Average cost of un additional output beyond 4 of Chart 24.

a eorresponding concept of 8
ar importance in many othet
The producer may or may not b
assurning that certain competitive
traent of output to market cor}dl‘
ously, in accord with the prjnclpl“
equal price, that output tends ¥
equals price. Economic theory
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develops this principle as a fundamental tenet of the doectrine
of value; the analysis of the coneept is for that reason, as well
as on account of its mathematical implications, an essential step
in our examination of the cosi function.

The foregoing method—of choosing specific locations for the
second point B, and caleulating the corresponding numerical
resalte for ihe average cost of the additional output—docs not,
however, vield a determinate result for the limiting value of the

* average coxt of the additional output, as B actually falls upon A
for then beth additional output and additional cost become zexXo)
and the raiio of zero to zero has no meaning. NS ¢

We might make o supplementary chart, or image, in 1}-‘1.1'3‘0\1’1 the
horizontal wxis represents additional output, labeled ﬂgq:, and the
vertical axiz represents average cost, labeled Ac/Agyof the addi-
tional output, such as Chart 25. Here the direttien of the curve
at the left end suggests 2.3 as the limiting vadite’'when additional
output approaches zero. But the chart,deés not unmistakably
show 2.3 ns the limiting value; one obseever might estimate it
as 2.31 and another as 2.295, etc. ,T'he chart gives no precise
determination: as pointed out abe¥e; ‘no point can be calculated
and plottcd for the case when additional output is zero.

Exact Determination of Mdrginal Cost. A more powerful
method j¢ thercfore nepded, if a precise determination of the
fimiting value is to b{(éechred. T develop this more powerful
method, e abandon the specific numerical designation of
points A and B’;{'ﬁ'd‘ repregent them by (41, 1) and {gz, €3), respec-
tively (Chart.26n which the eurve of Chart 24 is reproduced).

The additional output, which we shall now represent by the
symbol Agy s

QY A=~ @ (20)

\aﬁii";he additional cost, represented by Ac, is?
Ac = Ca — o (21)
Another form of Feuation (20 is
| g = 1+ Ag (20a)
"The symhol Ag (and, likewise, Acy is compound symbel (see noie T,
p. 12)—it iz not A “limes” g any more than /215 A/ ctimes” 2. It is

eustomarily read ““increment in g.” The student should avoeid calling it u
“small ¢hange in ¢”; it nced not be small.
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Moreover, as A and B arc pbints of the eurve, (g1, ¢1) and (gs, ¢5)
must satisfly Equation (16)
e1 = 02¢] + 1.5g. + 7 {18b)

L
0 § g
CrarT 26.—Repetition of curve of Chart 19,
and the first of these becomes, by using Equation (20a),
2 = 0.2¢1 + 0401 g + 0.2(Ag)? + 13gy + 1.54¢ + 7 (160)
Subtracting Equation (166) from Equation ( 16::)' yields

At = gy — gy = 0.4¢: Ag 4+ 0.2 Ag)* 4 1.5 Ag (21a)
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The average cost of the additional output Ag is the ratio of the
additional cost Ac to Ag, and, by Equation (21a), it is

A
E‘é ~ 0.4q; +0.24¢ + L5 (22)

From Bguation (22) we can calculate, by substitufion for ¢
and Ag, the average cost of the additional output for any assumed
values of the original output ¢ and the additional output Ag.
Thus, taking ¢ as 2 and Ag as 3 to correspond to our first nu-,

merical case shove, we get AN
. _ A\
Ac ' A\
A—é:0.4x2+0.2x3+1.5 RO
- 29 R

as hefore. In similar manner, We could repyoduce all the
numerical results found above. Hguatic 122) is u perfectly
general formula for getting the averagescast of the additional
output-—for the cost situation of Equatien (16).

Moreover, liquation (22) enablc{sp’sﬁ to take a step not possible
by the earbiev numerical methpdﬂf Ywe can now determine the
exact limising value of Ac/Ag e’ Ag approaches %ero. Mathe-
maticians have o standard\symbol for the limiting value, or
limit, reached under cdified circumstances; this symbol is
merely a kind of shqr}hand expression for a verbal phrase, just
as v/ in v/2 mca{né"‘ the square root of " 2. The symbol is

“\\ lim ac
:§ w4 Ag=0 Ag
which 48 read “the limit of Ac/Ag, as Al approaches zero.”
WINCANP® L ; A
Phe hotation Ag = 0 below the main symbol is thus the
T‘Dlﬁ‘ase” deseribing the manner in which the limit of the ratio
is approached; it is approached in this problem by letting A¢
approach zero.

From Equation (22) we find

lim 3¢~ g4 + 1.5 23)
Ag=0 Ag

because the term 0.2 Ag approaches zero s Aq approaches Zero-
Equation (23) gives, by definition of marginal cost, the marginal

Q
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cost for output g1 If we choose for marginal cost the symbol
Cmy We have

tn = 04q: + 1.5 (24)

For the particular scale of operations represented by the
numerically specific point 4, for which output is 2, Equation {24)
gives for the marginal cost

"\
e =04X24 15 _ -
=23 (AN
7NN ©
as we cstimated from Table 7. The result, however, 3 now no
longer an estimate, it is exact. W)

The process of evaluating the Mmit of Acfdy, in symbolic
terms, thus affords a more powerful methoditlian the cu t~and-try
process of numerical substitution first attempted. The limit
concept is not only real, but the exact #ahie of the Limit can be
determined.  The introduction of thié;'hmit concept as a tool of
analysis is the most important.siﬁgle gtep wo shall {ake in
elaborating our elementary mdthématical equipment for the
study of economic problemg S Containod within it i& the root
ides of tho differentisul cdleulus, and much of the supposed
mystery of caleulus will*disappear if the student will get clearly
in mind the probcss,i&@ingle steps and as a systematic method,
leading up to Kqdatioh (24). _

So importantpig this method, with the reasoning upon which it
rosts, that s¢me further illustrations of the limit concept as
applicabl in>economics, and of the process of evalpating the
limit, will 06w be given, Although this direct process of evaluat-
ing ’El‘tc\'iimjt will be replaced in the next chapter by a more
elegunt, and in some respects simpler, process, the method here

. asetl so closely conforms to the basie reasoning upon which
jthe more elegant process rests that the reader will find the
lustrations here presented immensely helpful,

Demand Curves, Individual. For the purpose of presenting
these further illustrations, we turn from cost theory, which has
thus {ar provided all our illustra.tions, to another ficld of econcmic
theory.  Consider an individual consumer, having a stated
income, with particular reference to his demand for a specific

commodity at a stated time. Facts observed from commou

experience are (1) that the quantity ¢ of any particular com-
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modity (with negligible exccptions) which an individual con-
sumer will fake at a stated time {or during a stated interval of
time) depcnds upon the price p of that commodity; (2) that
the quantity decreascs as the price rises and inereascs as the price
fallg, as is iu general the case; and (3) that, for most commeodities,
price does not need to become indefinitely large in order to
reduce the consumer’s taking to zero, and likewise that cven a
gero price will not induce the consumer to take an indefinitely
large quantity. These characteristics of demand enable us
to specify, at least in approximate ferms, the functional relation,
between price and quantity demanded.! K, \J)
TapLE §.—INHTVIDTATL DEMAND SCHEDULE ror Commoniry A. QU.»\:N{I‘f"I‘IES
oF Coumontry A WHICE A PARTICULAR INDIFIPUAL WiLL TARE} AT

» SraTup Trum, ar Seecrrisr Pricns® ¢
T I X
- Quantity ~ Price | Quantity ” Price

) — |. R, _\\' [

¥ 65 | 171”’\“ 38
100 80 ! 200 ) 30
109 55 : 240 25
120 50 ‘ N300 20
133 45 | w400 15
130 40) 1 \™ 600 10

wh L

Data from Clanvin, . B, aud A, Fi Havuew, Principles of Bconomics, p. 100, Ginn &
Company, Bostan, 1837,

* Units: Cents per ** unit,” §o p{ixb:;;’"unit" of commodity, for quantity.

t Not speeifiad, \

Although the fordgding deseription runs in terms of price as
independeni varidble and quantity as dependent variable, a long-
standing Gustt\:'iﬁ," based largely upon the convenience of fitting
various paits.of cconomic theory together, dictates the Inverse
treatmonts, * As indicated earlier (footnote 1, page 7), which
varighlesis treated as independent and which ag dependent ig a
@Qﬁr of indifference so far as the mathematical analysis 18

' The uctual finding of such a funetional relation, for a given individual
consumer and a specified commodity at a stated time, may not admit of
complelely satisfactory treatment. Broadly, as in the case of the fune-
tional relution hetween cost and quaniity (Chap. 1}, the problem may be
approsched either on the a priori or on the empirieal basis; but, in practiee,
serious obstacles would be cncountered in either approach. It is sufficient
for purposes of the present theoretical discussion to know thut such a fune-
ﬁo_nal relation exists and that it has some form consistent wilh {he three
Points given above in the text.

N\



60 RUDIMENTARY MATHEMATICS

concerned. We shall therefore present our eharts with g meas-
ured horizontally and p measured vertically and speak of p as “a
funection of ¢,” though it is equally true that ¢ is a function of p,

The functional relation for a commodity A is sometimes stated
in tabular form, as in Table 8 The corresponding points are
plotted in Chart 27; they are not joincd by 2 curve or by line
segments, although presumably the individual’s demand {waiving
the faet that ultimately the physical units of a particular COil

P

80F o O
o O
s0f o | A&
Q \
40+ o \\\“
o DY
Jof o &V
&
elr \ o
\\ o
o oO o
L

~ 1 L I 1 L b

. ~.‘A§\ 100 200 300 400 500 600 Q

\ \ CHART 27.—Demand schedule, seleeted points only, given by Table 8.
\m Y modity, in ease of most commodities, become indivizibly small,
see note 1, page 21) is in fact a continuous function of price,
and correspondingly price is a continuous function of quantity.
The funetional relation can also be stated in gymbolic form,
and here we make a succession of assumptions. As in the case
of our earlier cost functions, the exact basis on which any one
of these assumed formulas rests need not be known, and we need
not even specify whether the hagis is a priori or empirieal.
That the assumed functions broadly satisfy the qualitative
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description covered by the three points above (page 858) is
_sufficient for the present purpose.

The first assumption is that the rclation between price and
quantity is 2 straight line, inclined downward-to-the-right. Such

P
80K (b =20}

{ ] !
O T 200 a0 ()
) CHART 28.—Assumed linear—lemand line.

a line may be taken as having intercepts a and b on the 0@ and
OP axes, as in Chart 28. The equation, in implicit form, of
that line is? i :

4,21 (25)
a b

' The reader will find an earlier discussion of the straight-line gquation in
terms of its intercepts in footnote 2, p. 24 e can “verify” the present
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Actually, the equation is represented by an cndless line extending
left of OP and above 0OQ' (the leltward extension of 0Q), and
also below 0@ and right of OP’, but we use only the portion
between 0Q and OP, as alone having economic significance.
Manifestly, this functional velation aceords broadly with the
three-point qualitative requircments in the text above: (uantity

P
|
50

30

30
el

10

1 1 i i 1 1 —

1
0 oW 20 30 40 a

A/
.,\'Qﬁanrr 29.— Agsumned domand curve of parabolie type.

2N\& . . . :
depénds’ on priee, quantity mcreases a8 price decreascs, quantity
is diob indefinitely large for zero price and price is not indefinitely

.,,lé:i"ge for zero quantity.
~ A second sssumption is that the functional relation is repre-

sented by a limited portion, the left portion that falls between
the 0 and OP axes, of the curve belonging to
' P=a+bg+ hy? (26)
___‘—‘—\_._“___. -
e(%uatiou by observing that when Pis zero g is ¢ (300 in Chart 28) , and whan
%18 zero p is b (80 in Chart 28),
In the aetual plotting of Chart 28, the general formula, Fquation (25,

is made specilic by assuming the numerical values 300 and 80 for e and b,
respectively.
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(Chart 20}.% "This curve, called a parabola, rests upon a second-
degree funetion gimilar to that examined in cost theory, Tquation
(16). Agaic, the curve of Chart 20 meets the three qualifative
requirements <ated in the text above. A distinguishing feature
of the presant curve Is that it s concave upward; while price
decreases a2 we pass Lo the right, as quantify increases, it (price)
decreages ot & diminishing rate. This notion of rate of decrease
(ov increase) nas already been encountered in the study of cost

funetions snd will reecive careful attention below (page a7y,

Tapim G.—Palgs oF VALUES OF § AND P For THE HQUsTION '\".\
p = TO — 2.5¢ + 0.02¢° ' O
Quanlity | Price ‘h Quantity ‘ ~Ifric}§’
q ‘ P ‘ g ‘ LV
0 . 70 { 25 - 20
5 | 5% ‘ 30 ,:’,\\‘1 13
10 I 4T H BB\ ‘ 7
15 37 | 40N 2
20 \ 28 || d2v85* \ 0
L | AN
# Approximate. : Y v

An alternative form of the setond assumption, resting on the
same general formula give it Equation (26) but having diffcrent
values of the constants ‘&I& in particular a negative b and nega-
tive k, ix iustrated 1 Chart 30.2 This eurve again meets the

! Equation (‘2{3)‘i~é'réndered specifie, for purposes of plolting, by taking
the numerical valuds 70, —2.5, and 0.02 for the constanis g, b and b, respec-~
tively, Plopied pairs of values aré shown in Tahle 9. To yleld such &
figure as ’hf@rt’ 29, b must be negative and & positive,

Actually, Equation (26) is represcnied by an endless curve that extends
11P‘§’a3d,—'t0—the~1eft, of OF, drops somewhat below £ (at the Tight of the
plotted portion), and then rigos above O and swechs off upward-to-the-

icht. Teonomic considerations obviously require that we confine the
eurve fo the downward-to-the-right portion (the left portion) between 0@
and OP, as shown in the chart.

? For this chart we assume the numerical values 70, —Q.5, and —0.005 for
&, b, and b, rospeetively; the plotied pairs of values appear in Table 10

Aclually, Bquation (26) is represented, 10T negaiive b and negative b,
by an endiess curve which, in passing to the left of 0P, rises for a moderate
distance and then turns downward and sweeps off indofinitely toward the
lower left, and which continues below 0 at the right end and sweeps down-
ward endlessly to the right. Jeonomie reality requires us to confine the
cuTve, as plotted, between positive (6 and positive 0P
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1 | 1 | |
0 e 40 50 0 ()
CHaur 30.—]{(}1}1}@(1 turve of parabolie type, second exam ple.

three qualitaive requirements, but it is concave downward.
As we pass®0 the right, price decreases, but it decreases at an
incrca-sipg..,mte. Although suech a curve is not necessarily

&)
,\\I{gﬁnu 10.—Pars oF Varmes or ¢ AND p FOE TRE Bguartiow
":.\ P =170 — 0.50 — 0.00542
”\j”\;“ Quantity Price Quantity . Price
g D q ¥4
_ _—
0 70 ’ 50 32.5
10 64.5 55 27.375
20 53 GO 22
30 5).5 65 16.375
35 46.375 70 10.5
40 42 75 4 375
45 37.375 78.45% 0

¥ Approximata,
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gnrealistic, it is less likely to arise in true demand situations
than a curve shaped like that of Chart 29, '

A third sssumpftion worthy of study is that the functional
relation iz

pg =k with & constant
This is in implicit form, but can be seived explivitly for p to yield
k
== 27), &
P=73 27, o\
Oy
200+
] AR
5 R&4
.\:\}
150+ )
07\
R
ANV
100} R\
S0
> ' T
N 100 150 2
R Q

CragrT ‘3‘\f«rv'Dema.nd cirrve of hyperbolic type:! curve of ynity elasticity.

Tablt;r];’l\furnishcs pairs of values for the specific case & = 900,
‘}“{1 the corresponding curve is presented in Chart 3L. Although

} - FION
\/ TasLy 11—Parrs oF VALGES OF g AND p FOB THE EQuarion

pg = 900
Quantity ' Price »Quaniity ¢ Price
q il q L
5 180 36 25
10 90 B0 15
15 60 90 10
25 36 180 5
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the curve is plotted only for g between & and 180, it actually
extends indefinitely upward as ¢ approaches zeroc and indefi-
nitely to the right as p approaches zero. The entire curve,
throughout any range we desire to calculate, lies hotween 0Q
and OP. At no point does the curve cut or touch 4} or OF;
this may be secn by substituting ¢ (or p} as zero in Lgnution (27)
and attempling to caleulate the corresponding p (er ). The
“regult” is k “divided by” zero (900 “divided by” zero); dnd
we formed the habil in elementary algebrs of calling such asesult
infinite) A careful statement of the situation reads: B¥ taking
g (or p) sufficiently small (but never actually cquai™Mo zero),
we ean make p (or ¢} larger than any number E0Wever large
which we care to assign in advance, Thus, if wéiiant to make
p larger than 9 million, we have mercly to¥ake ¢ smaller than
1,/10,000. O

The curve of Chart, 31 manifestly mééts the first $wo of the
qualitative requirements lLsted abd\% (page 58); but, as if
does not admit of ¢ or p ever betoming zero, it does not meet
the third requirement. Tt is thefeforc not a curve likely to
reflect an individual's demafd for an ordinary commodity in
any realistic sense; hut itjl}'as' such theoretical importance, and
1s so close to ecrtain realfstic cases, that its study is advsniageous.

o\

1 More loosely, wmednuy have become acoustomed to call it “infinity.”
This word is Objﬁ'(it-i able {see p. 200 and should constantly be shunned by
the student, for .itﬁ mse involves the danger of coming to regard au infinite
number a3 havife some definite size, just as 7 or 816 has u dofinite size.
This notion g Bssentinlly wrong: an infinite number has no dofinite magni-
tude, itgbasic quality is that it is indefinitely large when compared with
OrtlinéginﬁlnnlJers. Thus, strictly, we cannot zay “000 divided by zero
equalsinfinity,” for actual division by zero is ruled out, We roust say that
thesatio of 900 to #, a3 & beeomes Indefinitely close to zora, bocornes indefi-

{aitely lerge, becomes infinite. To be vory carcful, we must say thab, by

O

taking z smaller than some specified mmnall number (very small fraction,
presumably), we pan ronder the ratio larger than any previously assigned
lar_gc nuraber, however large. The student may regard all {his as a mere
quibble, but it iz said to help him get out of his mind the fallacious notions
that .(l) actual division by zero iz possible, and {2} an infinite number hag &
definite size. In analyses involving limits we are often concerned with
r:endermg cerlain variables exeeedingly small, with allowing them to
¢ appma‘ch” sero, and with rendering eertain othor varisbles exceedingly
large, with permitting them to hecome infinite. and we must never forget

t}lajc in the;c cases the variable does not actually take on the vahe of the
limit that it approaches.



LIMITS 67

For the present, we note that it is concave upward, price decreases
as quantiby increases, but always at a diminishing rate. More-
over, the curve has a peculiar sort of symmetry; if we imagine
the chart felded along a line bisecting the angle POQ, the two
halves of the curve fall info exact coincidence with each other.*
‘Margina! Tility. The older theory of demand rests upon the
hypothesis that the total taking by an individual, of & particular
commodity at a stated time, contribuies in a measurable degree
to the total utility enjoyed by hira. ‘The utility of a commodity
to an individual represents the intensity of his desire for it and,
Leflects its capacity to afford him certain satisfactions—it\ &
psychologicsl, ethical, or other sense;  Although “gatisfaction”’
does not readily lend itself to measurement, economic theory
wsed to assume that the related phencmenon utilit:}(,'m’r af least
a change in utility, i3 measurable and that it measurement
is in pecuniary terms. TJust how the utility of’a commodity to
an individual Is related to the satisfactions derivable by him
from it dees not admit of preeise detenm:iﬂation. The relation -
can, however, be satisfactorily covered for'theoretical purposes by
assuming, as seems plausible, that':there is for the individual
a utility funetion w (v being a furiction of the quantity of the
commodity) having the fqlltm;ing properties: (1) it remains
unchanged if the satisfactiOns yielded by the commodity remain
unchanged, (2) it v ’é&;’m the same dircction (increages or
decreases) as the sati\sf_actions vary (increasc OT decrease), and
(3) the larger of pye/variations in u is associated with the larger
of two variatighedn satisfactions. These properties manifestly
establish oullgr certain qualitative relations between u and
S&tisfaetiQ[gs:? We take it for granted, however, that the

© 1The Sthdent familiar with analvtic geometry will Tecognize this as &

propesty of the equilateral kyyperbola, of which Equation (27) is the formula.
Eoywill know also thal there g another and sirilar branch of the curve,
I¥ng belween the negative axis 0@ and the negative axis 0P'; but this
branch has been ignored here as obviously without sconotnic significance.

? Tor more elaborate statement, see A. L. BOWLEY, Muthematical Ground-
work of Econowmics, p. 1, Oxford University Press, Vesw York, 1924. See
also Ganvis and HAXSEN, op. cil, PD 134151, DMany gtudents will, how-
ever, be aware of the fuct that the approach chosen in the text herewith no
longer commands the approval of the majority of economists and hag been
replaced by another approach that works with “indiflercnce maps.”  Still
later developments have produced 2 method that also docs away with the

latter, But we have here chosen the utility approach becauss it affords the



63 RUDIMENTARY MATHEMATICS

individual does appraise his satisfactions with tolerable accuracy
in terms of utility; we assume that his measurements of utility
consist in making his appraisals of desiredness and i reflecting
them in his ceconomic bchavior, particularly as respects his
demand for the commodity, He makes decisions, whether to
acquire or forego an additional unit (or small quantity) of a

{ " - N
B000F . N o
¢\
oY’
5000 -
NG
4000 N\
AQJ
3000 X js\
2000 N \
1000 F pg
\\ N’
0 &~ 00 200 300
,’\'":CHART 32.—Total-utility enrve, parabolic type.

~E

eom\m\\sd:ity when he already has a supply of the commodity, and

theso decisions result in actions that reflect meagurements of his

. ;t}fjiﬂity in pecuniary terms.

) For present purposes, we shall assume that the utility # can be
expressed as a function of the quantity ¢, of the commodity,
that the individual actually takes (see page 150 for diseussion
of a tentative “derivation” of a utility function and of certain
difficulties incident thereto). Thus, we assume

= flg)

aying our mathematical concepts in the simplest

hest opportunity for displ
way. .
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and, to supply a particular illustration, we further assume that,
for a particniar individual and a particular commodity in the
circumstanccs existing at a partieular time, the function has
the general icrm

u=2bg——¢ - (28)

8000

5080

4400 -

3000

¥

200

1000

0 =7 200 M Q

. N/

i@;i.-m'r 33.—Change in utility for carve of C'hart 32.

where E{&“a are positive eonstants.  To render this numerically
Bpt{c{ﬁ”@," choose b and a so that
\'"\;.J u = 80g — 0’ (29)
and the function can then be plotted (by use of a table of values,
not reproduced) as in Chart 32.1 o .
Suppose now that we consider the change in utility .3330“1&'3'0‘1
with a change in quantity. Let point 4, Chart 33 (which exactly

' Actually, the curve extends downward-to-the-left of ou _zan_ld also c‘lown-
ward-to-the-righf, below the right end of 047, Only the positive portion (.)f
the eurve is shown, and only the left (rising) half of that portion has ceenomic
Meaning,
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reproduces the curve of Chart 32), represent the relation between
% and g for any chosen ¢ (called g1) whatever, excent that A
should not be chosen at O or at the right of the highest point M.

Suppose now that the individual's taking increases from ¢
to g1 + Ag, and that the new situation is represented by point B
(g1 + Ag, w1 + Au). The corresponding increase Aw, in u, may
be regarded as the increase in utility associated with the inereags,
Ag, in quantity. The corresponding average increase in ufility,

per unit of increase in quantity, is ¢\
a :"\ w
An Ao
_ ¥ 4 '~(
Ag AN 2

0

and, as [using the general cquution {28) 1'ather"falsm the specifie
equation (29) chosen for plotting] O

D

Au = (w1 + Aw) — 4y w\ v

= b{g + Ag) — 2(@1 + ) - (bql -~ -'-i".?)
A ’ & /7
—pag— 220008 Lage
e 88 @ ?
Au BboAlh
Ag - b — 2;;“@—515@
If B is now allqm%h‘ to slide along the curve toward 4, g will
approach zero 3;11,6 '
N\ S/
M\ . A
@ ImEg-r-tia-w. @
O
This limiting value w, is called the marginal utility at point A (or
m;fg’z’ quantity ¢.).

y " Thus, marginal utility at a point A of the utility curve is
defined as the limiting value of the ratio of the inerease in utility,
agsociated with an increase in quantity, to that increase in
quantity, as the increase in quantity approaches zero as a limit
Negleeting the subseript 1 of ¢, we may regard Equation (30)
as stating w. as a function of ¢; it is plotted (for the sclected &
and &) in Chart 34, Once more the imagoe relationship appears
between two charts: Chart 34 is the image of Chart 33, the rela~

ﬁ?ﬁ between them being specified by the definition of marginal
utility.
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We obsorve,! from Equation (30}, that U 15 positive for ¢ less
than /2 and is negative for ¢ greater than /2. In fact, Chart

U

m

8oy

60

40

20
S
\,\,\ | e
O R

N Cnarr 24 —Marginal utility for total-utility function of Chart 32.

\’32 showed that, for some point M not pre.t:isely.known in. terms.
of g, u is maximum; Lo left of M, increages with ¢ to.mght oi_ .
M, u decreases as ¢ increases. We shall find (page 118) that

i The foregoing analysis, thenugh worked out for points on‘the curve left
of M, 1s ln&iheniatica,ﬂy valid for the right portion a,lsf,o.‘ Heonomic crm'-
siderations imply that negative values of e are not 1'er1hst-1_(‘-; hem‘:e 1»-]_13 por-
tion of the curve of Chart 32 to right of M is not cconomically _Elgmﬁﬁ-ﬁﬂt;
hence 3 is not strictly s maxinmum, for utilit?, in the senze defined 1_3810“\
b. 150, except perhaps:: i & Crugoe economy where & good may con peivably
be presont in so great & quantity thab part, of it constitutes & nuisance.
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Cranr 35.—Total-utility curv@hbic-pmabola type.
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CHART 36.—Murginal utility for total-utility function of Charb 35,
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this maximumn point M, for «, occurs for precisely the value of
g, viz., a/2, which makes . zero., Ior the present, we merely
assert: left of M, marginal utility is positive, right of M, it is
negative.

Consider 2 mmore complicatéd utility function

u = ag + bg® + kg (31)

where @, b, and 7 are constants. ITleve, following a like procedure

w4 Au = 6lg + Ag) + blg + A¢)% + k(g + Ag)? ¢
Au = o Ag + 2bg Ag + b(Ag)® + 3k Ag + 3hglag)® \ N
+ gl
%-;” — ¢+ Zbg 4 b Ag + 3he? -+ Shq Ag + A(ag)? O
= Tim 2% = ¢ 1 Zbg + 3he? > (32
ag=0 ¢ AN

where the subseript 1 has becn omitted fromf\g“throughout.

Charts 36 and 36 show the utility funckiom, equation (31}, and
corresponding marginal utility functioh, .Equation (32), for ¢, b,
and h ehoser as 288, —30, and 1. (The tables of values are not
reproduced, bub can be constriigited by the reader) Irom
these charts it will be seen that this ulility function fulfills the
conditions cxcinarily imposédh upon such functions, only to the
point where ¢ = 8. \\i’ )

A third agsumption as to the form of the utility funetion,
having some impor{&fmﬁe for certain prablems of economic theory,
takes O
\\ u=klogg (33)

where % iﬁo}!o;lst-ant.l ‘The marginal utility in this casc cannot

L THE Yight, member of this equation is to be read “k times log ¢ log ¢ s
agmp"ound symhol, meaning “the logarithm of g." Tor the .bene,ﬁt of
resd€rs not fsmiliar with logarithms, we note that “the logarithm of i
tumber = to the base b is the exponent of that power of & which equals .
Thus, if

y = loge &
(ordinarily the base of a logarithm is indicatod, as here, by attaching it as &
subseript to “log”) the above definition means '

W ==

These two cquations—the first, which expressed ¥ explicitly ju terms of
log &, and the second, which expresses ® explicitly as equal to b to the ¥

N

A
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readily be caleulated by the direct application of the limit
process along the foregoing lines, and diseussion of this interesting
case would be facilitated by use of the derivative concep’t
{(page 87). '

Demand Curves, Collective. The demand curves discussed
ahove pertain to an individual consumer. The present scetion
deals with a generalized demand curve, representing the collective
demand, for a particular commodity at a stated timc, ?esultir@
from the compounding of the demands of all individaals fwhose
demand is felt in the market to which the collective dem ;md\éurvc
{or function) pertains.! Buch a collective demand ¥anction,

R

<

power—ure thus alternative forms of the zame furlctiong@({d:itiu .

When the symbol “log’’ is used without any subgerpt, the hase is under-
stood us having one of {wo standard values, either\d0, when lozarithms are
being used as & tool for ordinary computations, or \Ee fixed constant e (ealled
the Napierian base, and equal to 2.71828183, disregarding lurther desimals),
when logarithms arise in ordinary theoreticalfprobloms,  Which ol these two
bases is {0 be understood In'a given case wlrdinarily be obvions: otherwise
the bage, 10 or ¢ a5 the case may be, wafld be indicated by the subseript.
In all cases where Lhe base is neit'hc.rg.jl’ﬁ nor &, it should be indicated by a
subseript. RN

Understanding that the hase is ¢ in Equution (33), the reader will note
that that equation can be golved oxplicitiy for ¢

, imx\ g = ew

When logarithm‘sﬁx\c used as a tool in ordinary computations, the base
10 is uswally adopted. Klaborate {ubles, tables of logarithms, have heen
compiled, givingdfto the desired sumber of decimal places) the logarithms
to the basgsd0bf successive numbers. By use of such a lable, various
a.rif.hmcté ee;.lz aperations—such as multiplication, division, raising to powers,
extracfiﬂg" roots—can be carried out much faster and more easily than by
longshatd arithmetic. The rosults of such computations by logarithms
a.r\e‘ generally not exaet, but any desired degree of approach to aceuracy eun

...\bg'obtained by using a table of logarithms that is carried Lo en ough decimals.

N\ For the prineiples underlying computation by logarithmg, and exposition of

the methods actually used, the student should consult a text on collnge
algebra. )

We remark finally that the ordinary slide rule is mercly a deviee for
making certain computations {approximate} by a mechunicsl use of the
principles of logarithms.

! Wo refrain from attempting a precise definition of the term market, hub
the reader will find pertinent diseussions in ceonomie treatises,  Moreover,
we do not speeify how the demands of individuals are ““compounded™ in
the market. - An obyiously simple aggumption is that they (the guantities
demanded) are merely added, for each price; but the reader will sugpect that
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when stated in explicit terms, gives p equal to an expression
involving ¢, where ¢ is now the aggregate quantity taken by all
individuals, iv the stated market, at price p.

The qualitative characteristics of such a collective demand
fanetion arve largely similar to those stated above (page 58) for
an individiual demand function. But the foree of the third
characteristie—that quantity becomes zero for a moderately high
price, and that quantity is only moderately large for zero price—. N\
‘s hore sornewhat reduced.  In other words, there is a greaten
likelihood that the collective demand curve will not cut the QP
wxis, if at all, until it rises far above O, or the 0Q axis, if at.all,
until it passes far to the right of O. - This midified pyaﬁ’&ty of
the eollective demand function results from \raﬁoui(ionsidera-
tions, whick the reader will find elaborated in econgmic treatises;
but & principal rveason is that inequality of\jilcome among
individuals vemders the individual curves, to,tgéscblnpounded into
the eollective curve, very different one frgmanother.

Moreover, the reader must bear in minij that the very shapes of
the individusl demand curves, goingo make up the collective
eurve, may well differ one from. fz}.’n(’)ther. Likewise the shape
of the vesultanh collective demdnd curve need not be similar to
all, or even uny, of the shapef sf the constituent individual curves.
Thug, for a given comm Qd"i%* in a stated market, some individuals
may have demand quries of the simple straight-line type [Fqua-
tion (25)] with vatius values of its constants, others of the
paraholic type iE’qu‘a;t.ion (26)], others perhaps of the hyperbolie
type [Equatign(27)], and still others of types not discussed
above.! %{iﬁft‘z‘spondingly, the resultant ecollective demand
curve x\{piﬁ{ have a mathematical form different from some of
thesesBind might differ from all of them. Again we remark
thafyJor present purposes, the precise manner in which a collec-
e demand function arises from its individual constituents nceds
not be known; we merely assume that the collective demand
functlion oxists, that it has the above (page 58) gualitative char-

- . —

“the proeess of compounding may be more complex than mere agldit-ion,
becanse, for example, of possible reactions of the demand of indiv_ldual A
upon thut of individuel B. For purposes of the present analysis, these
Questions can be ignored.

' We remark, however, that wide diversity in the types of demand curves,
for a given commodity, would ordinarily not atise in practice.
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acteristics, and that its mathematical formula can take one of
various agsumed forms. _

Thus we may assume that the collective demand function!
is & straight line (see footnote 1, page 74)

b
p=b——gq (34)
or a parabola £\
p=a¢—>bg—hg L \33)
or a hyperbola D)y
k 'S 36
= — L W 36
=y Y
or gome more complicated form such as ) o\’;','
p=—" (37)
- T = af
VN

Marginal Revenue Curve. Supp}os‘é that the cocllective
demand, for a given commeodity ix ‘B Stated market, is given by

P\
RN (34

and consider a single pg’adﬁéer, a monopolist, who is supplying the
commodity for this.fndrket. An important series of problems
concerns the bea\iigg%f the market demand upon the producer’s
output ¢; the gfot the market is, under the suppositions of the
case, controlledby this one producer.

If the pi‘g}dﬁcer furnishes ¢ units to the market, the price
establi }gé\d will be the p given by equation (34) for that ¢, and
his J@a{ receipts, total rezenue, will be p times ¢. This may
bg}fvrltten a3 a new function, stating revenue R in terms of ¢,

N\

QO B=pg~bg—2g @
SUDQOSC that the producer is supplying ¢, units to the market
for which his revenue is Ry, and then increases his output to

! The constants a, b, &, & in the formulas herewith which lock like Fiqua-
tions (25}, {26), and (27) are, of course, entirely new numerical values for the
present case.  As stated before, these collective formulag have no necessary
connection with any one of the individual formulas, All the constants are

positive; accordingly a constant preceded by & minug sign, such as —&, is s
negative number, :
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g + 8g. There will be a corresponding change, we shall call
it an increase, although it may be a decrease, in which ease AR
would be negative, in R, which is designated AR. From Equa-
tion (38)

Ra=bqp— 4

B+ &R = b{gn + Ag) — g (g1 + Ag)?

N

b b b ¢
=byn +bAg— i~ 2, b9~ E(AQ);" O
, ;
QR=bAq—2§q1Ag——)(Aq)“ a\, 3
“ ¢ R
and the average increase in B per unit increase in Qs
AR b 7.\
EE =b - ZEQ1 — —a-‘Aq\.
In the limit, s Aq approaches zero,’ \/
AR v
Iim == = b 8= ¢ = Ba {39)
Ag=0 Aq ,j:o @ gl.

This limiting value is cal]gc{‘ghe marginal revenue for output g1t
Neglecting the subseript 1 of ¢, Kquation (39) gives the
marginal revenue ag au explicit funetion of the quantity of

n\

output. Correspontihg to this function, a curve {straight line, -

a5 it happens) eivbe drawn; this is shown dotted in Chart 37
(with ¢« and b ¥alken as 120 and 500, respectively). This marginal
revenue {:}}Q’.&’ is an image of the demand curve from which it
is derivedy, also shown (solid line) in the chart.?

.’..J{é“r}e, ‘as before, we imagine the situation for ¢ and R, represented by a
] inf A of the curve, and for g1 + Agand By + AR, represented by point B.
Thén let B slide along the curve toward 4, 2.¢,, let Ag approach zero. As the
Procedure iy exaetly similar to that followed above in connection with Chart
32 (which would serve for this purpese if we replace the variable w by £ and
?hoﬁe the literal constants b and — (b/a) as tho same numbers used in Chart
82}, the chart in the prescnt casc is not shown.

t The qualifying phrase “for output . is really essential, as the marginal
Tevenue differs for different outputs, An equivalent qualifying phrase could
Be written, in terms of the chart (not shown), as “'af point £ 7 )

" This is the first case in which we have shown both a curve and its image

o2 asingle chart. As this type of construction is frequently used in economic’

8talysis, the roader ghould become familiar with it.
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Application of a similar procedure to the case involving a
collective demand curve of the parabolic type [Equation (35)]
vields

R = ag — byt — hg®
and, after calculating AR as the difference between Ry + AR
(belonging to output ¢ + Ag) and £, (belonging to ¢ and

taking the limit of AR/Ag as Aq approaches zero, 2\
im A% o opg — 3kt = R L OWHO)
Ag=0) Aq ',.\’\ 4
F \J
. R
R, 0
\::\\
D
’..x\"
1\
£V, 1 5 1 ! _ :
[J\\ 3 100 g

QH;&RT 37 —Price (s0lid line) snd marginal revenue {dotled iine), {or a Hnear-
\' - demand funetion.
The process of caleulating the limifing value of AR/Aq used
in these illustrations cannct be carried through for certain types
of assumed collective demand functions. For example, if the
collective demand funection ig

P = ghvt ' (__]:]_)

where % is a constant (a positive fraction, less than 1) and a and b
are constants, the revenue function is

R = g’ghq/b
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and our tools from elementary algebra are not sufficiently power-
ful to yvield & direct evaluation, by calculating the limit of
AR/Ag, for R...  An attempt to apply the foregoing process leads
in fact to
Ry = aqhv?
Rl -+ AR = G(Q’l -+ Aq)hq’ﬂ""‘”"b

200t ' \

150

100

50t

Cxzarr 35. -Demand funetion of the exponential type-
which may be written
= gg:hh*e? + @ Aghev e

giving

a AR = aphes(hies — 1) + a Aghohiet
A R

FNTP L -
AR _ aghevt 3 1 ! + ahnRA

Ag q
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In the limit, as Ag¢ approaches 0, A*¢* approaches 1, and the
gecond term of AR/Aq approaches oh®/f.  But the numerator
of the fraction in the first term of AR/Ag approaches 1 — 1, which
is zero, while the denominator also approaches zovo, Hence,
the first term is “indeterminate,” so far as disclosed by the
process heretofore used: it contains a fraction for which both
numerator and denominator approach zero in the limit. TJ\e
foregoing process thus does not readily yicld the mareinal revetue
for  demand situation of the type reflected in Equation {(41).
More generally, we assert that this direct process of gwilufiting
the limit is laborious and involved for various t-ypes}‘z;f demand

functions which might be assumed and which g.pﬁ)eai’ tolerably -

in accord with the realistic characteristics of wollgctive demand.
That the method works easily for such an eglation as (38) is a
fortunate circumstance rather than the general rule. T'reatment
of certain ecases, such as Equation (fl{l}; for which the direct
method is not readily available is pgsgible by methods given in
the next chapter (page 94),! R

I Equation {41} for & taken ag %{Eﬁust be a positive fraction less than 1,
# the eurve is to have the desiréd qualitative characteristics, p. 58, of a
demand curve) and for o taken'8s 1,000 and b taken as 14 is represented by
the ecurve of Chart 38. fEER table of values is not reproduced.)  For ¢
equal zero, p is 1,000,  Mathematically, valuos of p exist for negative vajues

of g, the curve sweefs upWward to the left of OP, hut only the portion to the
right of P has cgbpomic meaning. .




CHAPTER 1V
RATES AND DERIVATIVES

At numerous points in earlier chapters, interest has eentered in

the ratio of une variable to another. Thus, average cost of thet
- £ N\

entire output is the ratic of total cost to total output 2N
. _ ¢ :"?’«. '
E=- \
¢ R&4

Bimilurly, svorage cost of an additional output AYis the cor-
responding additional eost Ac divided by Ag,.This latter ratio
was scen to have g limiting value as Ag approaches zero,!

NN

e = lim 24V
Tt AQ=O.A’Q'

Similar instances appeared im¥he illustrations from demand
theory, with particular referg;ncé' to the utility of an individual
consumer and the revenue-of & monopolistic producer.

Ratios such as the féreg oing may be called raies. They have
the same genaeric propertics as the simplest type of rates with
which we are famﬂié?, viz., velocities or speeds. For example,
consider a rnoton E]tjurney from a stated point in New York City
to a stated lm;;it in Boston: let the total distance covered be
239 mjlesk@“d the time be 614 hours. The rate at which the
distancp \wWas covered would be distance divided by time,
239 65, which is approximately 36.7 miles per hour. Such
?‘\{&ﬁé is sometimes distinguished from other rates by calling
b & fime rate, the word “time” specifying the nature of the
independent variable. It is also called a velocity {(although

! We ignore here the possibility that, in the case of certain types of func-
tons, the limit may not exist or may be indeterminate for certain values of g.
The curves studied sbove were purposely selected to avoid troublesome
Wstances of this kind, For the present, the student need not be concerned
ﬂ.h.nut., cases for which the limit does not exist, for they do not ordinarily
Arise in slomentary economic problems.

81

Q!



/N

N\

82 RUDIMENTARY MATHEMATICH

velocity comprises direction of movement as well as rate) or
speed.!

Average and Instantaneous Rates. Tho most significant fact
about the rate of 36.7 miles per hour, discussed above, ig that it
is an average rate. It implics that, if the moler had been
driven ai a constant veloeity throughout the trip and if thet
velocity had been 36.7, the total distunce would have been
covered in the same time as actually taken, The obdots
fact of experience, however, is that no molor eould m_a.lf.f\e‘sgch a
trip at constant velocity: not only would the actual vobanity vary
over different portions of the journey, but stops alony the way
would presumably oceur, and at such times thé fiue velocity
would be zero.  All this is well known to the m’Qﬁdris bt he i fully
aware that, in order to have an average$pued ss high as 36.7
hetween New York and Boston, he mugh attain an weiial speed
much above 36.7 on some parts of th{‘jq\m’ney.

The average rate is thus s resulteht, or composite, of the
variable actual rates prevailing gidng different parts of the route.
Assuming that the motor's gfieedometer was not functioning,
the driver might seek to defermine approximateiy his actual
rate for one or more porfivns. of the journey. Thus, he might
observe the time talkfn between two towns along the route,
and by taking thesrdap distance between the towns, caleulate
the ratio of distagee divided by time. The rvesult would be the
time rate betgteen those two towns; but it would still be an
average rafé/ for the actual speed might vary widely along the
way between the towns. Or, he might clock the time taken
over oné/of the l-mile stretches marked off at certain places
onmalh highways, divide unity (1 mile)} by the time noted, and
haye his specd—still an average rate—for that particular marked

::):'rﬁle‘ Neither of these procedures gives him the actual speed

) Y
4

at any particular point of the trip; although, by taking suffi-
ciently frequent observations for a succession of sufficiently short
distances, he can get as near as he wishes to a complete tabulation
of his varying speed. And yet, even though he broke the entire
distanee into a very large number of very smull segments, which
amounts to hreaking the entire time of the trip into many very

L Thl.:ls, bAy deﬁx}ition, speed is a rate, the rate at which distanee is traveled
per unib time. The colloquisl exprossion “rate of speed” is thercfor®
redundant and should always be shunned in precise speaking.
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gmall intervals, and ealculated the average speed for each, he
would still not know the actual speed at any point, waiving the
{act that he kaows the specd is zoro whenever he is standing still,
The speed, at a particular time of the trip, which the motorist

secks to measure by ealeulating the average speeds for briefer

and briefer infervals following that moment—the actual speed
at a particular point of the route, or at a particular instant of
time- —is called an instanianeous rate,

The student will readily rccognize the limit notion in the
eoncept. of an instantaneous rate. We may in fact define the
instantancous rate at a particular instant of time ag the limit
of the average rate during an interval of time immediately follow-
ing that instant, as the said interval approaches zero g @limit.
Accordingly, the ailempt of the motorist, desc-ribed"fhjoxfe, to
determine hiz actual rates at various points along\bhe route by
bresking the fotal distance into numerous smélh Segments and
calculating tha average rate for each segmcﬁt}rields an approxi-
mation to tke ingtantaneous rate at any point within esch seg-
ment. As the segment becomes shorfes and shorter, the time
interval approsches zero, the avekage rate in the segment
approaches i instantancous ratélas a limit.!

Although cur carly contactsgith the rate concept run in terms
of time rates, dislance di}{rd}d by time, the concept is much
more general. Some vaMable other than time can be the inde-
pendent, varizhle in agate, the ratio of a dependent variable to
such independent ydriable is just as truly a rate. The student
should therofore bire'&k the habit of thinking of a rate as a time
rate, & speed, ghwelacity, and come to think of it in the gencral
Senge; y ?'ﬂ.{@?‘i}ﬂ: ratio that describes the variafion of one variable
with referetice to the variation in another variable. For all rates
of this(iore general sort, the distinetion between average rate
aﬂd\'{nétﬂnteous rate remains of basic importance.

Thus the average cost for a specified output ¢

- C

q

' The speedometer is a mechaniea] device for determining approximately
th 8 instantancons rate, although it does not depend cssentially upon the
limit pringd ple; but technical imperfections result in its yielding in fact an
Werage rute for g very hrief interval, rather than the true instantancous

mto_.d Some speedometers are in fact slow to respond to changes in actual
Speed, .

N

N

[WA
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is an average ratc. It simply means that, if the cozt per unit
were constant (fixed for all units of output, or more strictly
for each portion of the output), the total cost for output g w nuld
he ¢. Likewise, if the output at the scale g 1s iner sed by a
amount Ag, with a corresponding increase Ac in cost, the average
cost of the additional output

e O
Ag :
is an average rate. It merely implies that, il the rate\b? "v\hange
in cost relative to quantity were fixed at the level*ac/aq, a
increase Ag in output would bring an increase Ag 111 “gostt

On the other hand, the marginal cost R4

is an instantancous rate. Likexthé speed indieated by the
speedometer of an automobile, i ‘pértains to a specific point and
not to an interval. In the aui;c)mobl.le case, the interval 1s an
interval of time, but hertr gt is an interv al of quantity: the

' In these ingtances, when we talk of & “change” or an “increase,” we
feel an impelling inclifisiion to think of such change or increase ag a definite
movement, whie hherefore involves the notion of time. 'his insidious
cntrance of the$im? clement into all our thinking about varlativn must be
registeds wo mu%t come to think of a variation as a mere difference, with ne
1mphcat10n’thai a change takes place and requires 4 lapsc of time in which
to take place.  Variations, in the sense of differcnees, need contuin no lime

clemeftty
%&rmtmnq in the sense of “differences’’ not involving a time element.
may be illustrated by the tomper&turee at various pomts in a roem. W
\Obser\, ed the temperatures at various points, ranging from a point near
the radiator to a point near a window exposed to o wintry wind, the ohsorvas
tions would surely record variation. If we used a single tharmometer, there
would be an “insidious cntrance of the time element” : time would actually
be eonsumed in moving the thermometer from onc pomt to another, snd the
observations would be ordered successively in time. If, however, we nsed
numerons thermometers, all identically calibrated, and st~1t10ned at the
varioys points with enough observers to read them ﬂlmult:incou-;lv variation
would still be recorded; but no time element would be present, and the varia-
tion would involve mere differences. This confusion in the sense of the
ward variation, belween the sense of 4 course of change over time and the
sense of mere simultancous differences, often perplescs the atudent of
econtomios, and he must learn early to make the neeessary distinetion.
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listinction relates merely to a difference in the nature of the
independent, variable.

Tikewise, all the marginal concepts discussed in the previous
chapter are instuntaneous rates. Marginal utility is theinstan-
taneous rate of change of utility with quantity. Marginal
revenue '

2, = lim AR
Ag =0 &q
is the instantancous rate of change of revenue with quantity. %,

Tt so happens that the economic cases of rates so far considered -
inelude only instances in which quantity is the i.ndepgpd’ent
variable, but mumerous instances having other indcpeﬁdent
variables eun arisc in practice. The concepts of a%¥erage rate
and instantaneous rate—the word “instantaredis’’ meaning
“at o point’* and not ““at an instant of time’ ’7@;1 the analytical
relationships presently to be developed cong;s{(ﬁiﬂg those concepts
are perfectly general. They are in noxway limited to such a
gpecifie independent variable as ’r.ime,gl"a-é quantity.

Rate of Profit. For cxample, thevsame concepts appear in
studying the return (or profil) Qh “eapital investment. Suppose
that, for a stated time interval Buch as & year, the aggregate neb
profit—dcfined in somoe appropriate way, such ag the remainder
of income ufter all op r@iﬁg costs like wages and expenditures
for materials and aMKﬁxcd coste like intercst and taxes are
dedncted—is Py ferMa specified indusirial cnterprise with the
amount of capiil”invested fixed during the nterval at 1.}
The averagcg{fihin on capital, the average raie of profif, is then

2 \ ’§ " P I = &
'S ’u L
\I}i an actual enterprise, the capital normally does not remain const:u}t
during an interval oven so brief as a year, For the prosent purpose, this
difficulty is waived by assuming capital fixed at its average for the year.
We are in truth dea.l;ng here with magnitudes that are themselves rates,
avernge time rates, Thus, in fact, P is the amovnt of profit per year for
the year under exn.minatior’l; the phJ_ruse “per year” implies aTl average time
mte.  Of necessity, many economic magnitudes are sueh time rates hecause
we are obliged to make measurements in terms of an interval of time. But
this entrance of the rate nolion inte the very definition of our eeonomie
wagnitudes ean be ignored in considering the yery different type of rate
here under study {see foonote, p. 1%.
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With the enterprise as it actually exists, the entive capital
investment is & single entity; and to think of the possibility
that some portion of it, say a parlicular machine, or & particular
pecuniary amount such as $1,000, may vield a profit at a rate
differing from P, appears somewhat artificial.

Nevertheless, we can helpfully examine the rate of variation
of profit with investment. We may imagine that Investment
is somewhat different from I, say I, and that correspondingly

‘profit amounts to P; rather than Py, For this second agsumed

2\
£\
L 3 Ny

situation, average rate of profit is

s

P -

T, s

P2= +¢2)
A~

Manifestly, we van conceive of profit as a funetion of investment,

just as cost was regarded (Chap. I) a&)a function nf output.
Such a [unctional relation between Qr@hﬁ and investmaonb shows,
symbolically, or graphically if it lsdcharted, how profit varies
with investment. Again, theXstudent is caufioned against

- reading a time element into dhe word “wvaries'': we are thinking

/N

here merely of different &n}éﬁnﬁs of profit assoeiated with different
amounts of investmenth and all these various amounts are
imagined as a.pp]icsg,ble\to a single instant, or interval, such as a
stated year, of timaS
By the custothary procedure {ollowed above, let
“J
0\ =1+ Al
O\ Py =P, 4+ AP

N

ansh then represent the average rate of profit on the additional

(ihvestment by

W

AP
AT

! As in previous functional relations studied, cost associated with quantity,
the manner of discovery of the funciion here may he obscure. Inthe present
instanee, as in the others, the alternatives are the s priori and the empirieal
methods; but practical obstacles in the way of the second approach are cven
more evident than in the casc of the individual demand curve (see p. 99)-
One of the chief obstacles arises because only coe experiment ean be tried
upon & given enterprise at a given time,
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By letting A& approach zero as a limit,’ we have the marginal, or
instantancous, rate of profit

I
P = lim 57

The Derivative Concept. Instantaneous rates, of the sort
illustrated by such marginal magnitudes as marginal cost, mar-
ginal utility, snd marginal return on investment, have roles s
extensive in various fields of applied mathematics that a special
methodology has been evolved for their symbolic treatménil)
This methodology is called differential calculus., Such & métiod-
ology, while it involves techmical and theoretical PHroblems
interesting {or their own sake, may be regarded by tht{'economist-
25 a mere working tool that facilitates the appiiedtion of the rate
notion, and the limit notion, fo economic reasoning. In this
sense, 1t is 1ike any other timesaving techniGal“device, such as a
multiplication table, which presents thesproducts, worked out
once for all, of various pairs of numb&¥ that would otherwise
need be muliplied every time one needed their products.

The differeace from such a gitaple timesaving device as the
multiplicatios $able is one of complexity. Differential calculus is
sufficiently eoinplicated, inits definitions and implications, so that
the user of ihe met-ht)(iﬁhllst be more carefully informed than
when using a mere ﬁ\ﬁlﬁiplication table. It is a mistake, how-
ever, to drosd somhe deep mystery in the calculus: the root
idens are not mégberious and the method that rests upon them
is wholly 1cgiﬁél'and readily understandable to anyone who has
diseiplined¢his mind to preeise thinking. Tt the reader has
mmfml&%ﬁmstered the foregoing treatment of limits, he need
encoutber no serious difficulty in grasping the significance of
i‘@?sﬁé elemeniary calculus notions which are pertinent to the

Nsiipler mathematical preblems in cconomics. He will presently
find himeelf possessed of a powerful tool of analysis, which will
not only suve time in the study of relationships among economic
variables, but also promote precision of reasoning in such study.

*Again, we waive the possibility that the Limit may not actually exist
for one or more points on the curve rolating profit to investment. We
4ssume for the present, though this may be at variance with practical fact
under eertain c.oxlditj_ong, that the curve has a simple form for which the limit
does exist at every point.
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The basic concept in the differential caleulus-is that of the
derivative—more strictly expressed, the ““derivative of a depend-
ent wvariable % with rcspeet to an independent varviable 2”—
and it is generally represented by the compound symbol!

dy

dx
A possible, and satisfactory, definition of the derivative, inhe
light of the foregoing discussion of rates, would read: The detiva-
tive of ¢ with respect to z is the instantaneous rate of c‘fw,ﬁge of
y with z. More generally, however, the d(,ﬂvatlve‘ defined
directly in terms of the limit concept, which, as obs\cmzpd above, Is
involved in the notion of instantanecus rate. 7

Thus, if ¥ i a function of z satisfying cert}fn rather libaral

requirements,? we consider the sitnation fahgdme spocified value
21 of # and then consider a change Az Q‘t'.r accompsanied by a
change Ay in . In the jargon of th\@ “Galeulus, these changes,
Az and Ay, are generally called Phdrements. The rstio Ay/Az
is the average rate of inueaqe in'y as x inercases from =z to
71+ Az, The derivative ol y “With respect to x, for x equal to
x1,% is defined as the limit o this ratio, as Az approaches zero;
thus, symbolically, h

} dy — lin A?)’

\\ h dx Ap= 0 —\-'I:

LIt iz in the hiéhost degree import'lnt. thai the student never forget that
this iz a vompqund 8y mbol; it is a single symbol meaning “the derivative ol
¥ with rebN,t dox'" Ibls not dy “divided by " dx; the upper portion is not
d “t.]'_meg A5 and the lower portion ig not d “t].mr‘s” z. Mathematicians
5'10 i \iqe,t treat dy/dx in sume rospects and for some symbolic operations as
if if\g'ere dy “divided by’ dz; the student may already have eneountered

(42)

'E;ﬂimp]eb of such treaiment ('-i(,e p. 151). In all such cases, however, the
\gareful worker never forgets the true nsture of the compound symbol.

Anyway, the student who iz beginning his excursion into the unknown realm
of caleulus will do well to adherc strictly to the basic statement; dy/dz iz a
single symbol; and it should not be tampered with, for example, by ireating
it as a fraction,

? In most elementary economic problems, these reqluromcnts are met and
need not eoncern us.

3 Birietly, this phrage is essentda,l, although in practies it is frequently
omitted from the defnition. Its presence serves to remind us that the
derivative may, and probably does, have different values as z changes.
For simple functions, such as those studied above, the limit has a value, and
thus the derivative exists, for each value of 1.
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The foregoing definition of the derivative, identifying it with
the limit of & ratio established in a specified manner, is perfeetly
general. Every cage discussed above, of a marginal magnitude
defined ag such a limit, therefore involves a derivative. Thus,
marginal cost is the derivative of cost with respect to output

¢ A=0dqg

marginal utifity is the derivative of utility with respect te
quantity demanded ’ \ W
Un = e im Bu N ;
dg  ag=02q e \
N
and marginal return on investment is the derivativéwo} profit with
respect fo investment O
P .. ap0
P = a EIBU.-A?L:‘
Tikewise, othor marginal concept besides those discussed
above, cun, in ull cases where th& marginal concept implies the
limit of & ratio of the type shown, be called derivatives., Maore-
over, even though the tersd ¥ marginal” is not attached to the
eoncept, 3o long as the liﬁﬁ‘b of a ratio, of the instantaneous-rate
sort, is involved, thegencept can clearly be represented by a
derivative. ConseQuently, if we can build up & scheme of
analysis for mapimdlating the derivative, subjecting it to mathe-
msticsl oper:ﬂjiﬁnés of various sorts, and exploring its relationships
to the vaxigliés « and y and functions of # and ¥ (expressions
containifghthem), we can at once use this scheme as a general
tool feRstudying functions of the marginal, or ingtantaneous-rate,
fyn.) . |
\Ijifferentiation. The foregoing definition of derivative implicg
that y is a Function of x; y may be any dependent variable,
such as cost, and & may be a corresponding independent variable,
sneh as quantity of output. The first step, in developing a
technical seheme for analyzing derivatives and studying problefns
Fhat involve derivatives, is the discovery of methods for determin-
ing the derivative for any particular function. Such & method,
called differentiation, may be expected to yield promptly the
derivative in any casc as soon. as the functional relation between
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v and « is known,! just as a logarithm table yields the logarithm
of a number as scon as the number is known, The formula,
which tells what the derivative is for any specified function, i
obtained basically by a divect application of the limit principle
invelved in the definition of derivative. In other words, these
formulas are found by applying the definition of derivative.
Omnce the formula has thus been worked out, it can thereafter be
used, without resort to the laborious limit caleumlation, «as %
guide for writing down the derivative immediately by inspeetion.?

Suppose, for example, the known function is a positiy ({iﬁ’r,egral
power of # (say, the fourth power) y M

-
27
< 3

y =z Ky
&/
Following the procedure of an earlier chaptéfr,\ for finding the
limit of Ay/Ax as Az approaches zero O
Y=z} \\\
y1+ Ay = (o + Ax)t \S
= of + 42} Az + 62(82)% + Ja1(Az)? + (Ax)t
Ay = 4ol Av + G (Aa)D+ o (Az)? + (Ax)

A AN
A—g 421 + Baf AR} 421(A0)? + (Ax)?

]

and hence 8§
J . ﬂ-?,f
N = lim =% = 458
\ \ dx ax=0 AZ '
To make this\’zt; general formula, for any value of z as well as for
Z1, we drq{fghé subseript 1 and have
$
'\ dy
\J 2L o 48 43)
& N dz (
‘,,_\J,’Kctusilly, for cascs encountered in elementary economics, we noed deriva-
#s\ives for only 2 few falrly simple types of functions. The methods outlined
\ ‘below, therefore, cover only a litnited range of functions for which deriva-
Lives might be desired In various branches of applied mathematics. (Some
are included below which are not needed in elemeniary economies.}
* Just as, in_clementary algebra, we have the formula

(@ +B)° = a -+ 3a% + Sab® 4- b°
which enables us to write down at onee
(2 +38)° =8 1 36k 4 54k + 27k

instead of golng through the lengthy weork of muliiplying (2 4 3k} by
(2 + 3%) and then multiplying the result by (2 + 34).
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Thiz formuia can always be used as a guide for writing down
the derivalive for this particular funection, #* The formula
ean be memorized, or it can be preserved in some accessible
list or index, where i can be found when needed. In any case,
43 20011 A3 3WE -!{110“-' th&t

y =a
we algo know that

dy s

e

oA

This formeuia portains to the particular case for ¥ equal t¢ the
fourth powsr of . We ohserve that the dvuvatlve in thr.s case
takes the form of ““4 times the third power of .7 Thig Suggests
the rule: The derivative with respect to # of the Mh\power of &
is equal to L {where % is a positive integer) timsg the (k — st
power of ». This rule can in fact be provediby a process of
computing the Hmit wholly analogous tolthe above, for any
k that is an integer, positive or negafive/ The proof is herc
omitted, but the resultant more general formula is now given for

y = xﬁ‘v )

Y Nzt 44

P = ( )
m\

By somewhat more ¢ npiz( mted analysis, also omitted here, this
regult can be established also for fractional values, posifive
or negative, of g Equatmn (44) therefore holds for every k.

Thug :f\"‘
]er" Y kis ‘ Derivative is
"\y' a3 —5 — By~
& WY = gz % %I_%

Differentiation Rules. Formulas like Equation {44} can be
worked out for various types of function; gach such formula
tells what the derivative of y with respect to = will be w hen y
5 the stated function of z. Such formulas are rulcs. for differ--
entlation. These rules can be systematically used for obtaining
the derivative for any stated function; knowledge of the rules,
OF an aceessible list of them, enables the student to write down
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at sight the derivatives of those functions commonly cncountered
in economics,’

Proofs of the various rules of dlfforvnuatmn corrasponding
to the proof of Tiquation {43), will not be given her e; they can be
found in various elementary texts on caleulus. DBroadly speak-
ing, the proofs rest upon the same straightforward application
of the limif notion, 7.e., the direct application of the definition
of derivative, as used in deriving Equation (43); but, for certfiln
functions, an indirect procedure in proof is advanwueauq or
necessary. Ior several cases presented in the rules bP[C}V\ pl aof
of the particular formula follows readily from the geng Aad iormula
for a function of & function, Rule 14. Even in cugt of indireet
proof, however, the limit concept involved in the éeﬁmuon of the
derivative is the ultimate foundation of the ptool; the raader may
fairly assumc that all differentiation rules 4:1eper.u1J dircetly or
indirectly, upon the limit concept. InOrder to have hmportant
differentiation rules available for use i the following and other

. analyses of economie problems, a partial list of such differentia-
tion rules is now pregented, w 1th0ut proof.

T. The derivative of a conqta.nt with respect to any variable, is
zero. Thus, if kis a contd:zmt

¥y dk
imx\ dz =0
2. The derixrqtix\ of & constant multiplied by a funchion is the
constant multiplied by the derivative of the function. Thus, if
kisa eon's.\taﬁt and ¢ is a function of z,
e\ dike)
.\’§ 3 : _d.'l: =k ‘_j:}/

3 The derivative of the sum of two (or more) functions is the

™\ “sum of the derivatives of the separate functions. Thus, if

v and w are functions of z,

Ao +w) _do , dv
e dix dx

! Nothing is said here about funetions that have no derivative, us dofined,
for certain vulues of 2, or in some easoy, for any value of z  Such funetions
do not ordinarily arise in cconomies, and the student may for the present

safely assume that every economic function does have a derivative for each
value of z.
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4. The derivative of the product of two functions is the sum of
two terms, the first function multiplied by the derivative of the
second, and the second funetion multiplicd by the derivative of
the first.  Thus, i » and w are functions of z,

divw)  dw

dx _1’%

d
+’w%

4q. The derivative of a quotient is the derivative of the
mmerator, divided by the denominator, minus the derivativea
~of the denorsinator, muitiplied by the numerator and dividéd

by the square of the denominator, g W
o '\ :
(5 e _va
de  wdr wlde y

5. The product of several {unetions vields &e}r{{rative made up
of several torms, each term being the desi@tive of onc function
multiplicd by the other functions. Thus) if 4 u, ¢, and w are

functions of x, O
d(tum) dt RO dv dw
T e — DA =— — = v ——
T unw —i—“ww iz + fuw e +- T

~4

A convenlent alternati»-‘ei}i}ndling of this case is to note that
log (tuvir) = log ¢ + lo@ + log v -+ log w, and then use rule 9.2
6. The dm‘ix-'z;ttivc,f\i’it-h regpect to 2, of any constant power of z,
where the powepnN®/designated by the (constant) exponent e,
is @ multiplicd By & power of z having an exponent less than & by
unity, Tl.“%“\’
O da”

= gge!
NN dx

o
s

[R@FP 18 the rule already given in Tguation (44).]
7. For the constant power of a function of %, the rule becomes

dv* , &
T = gt
dx dax
where v is 8, function of z.
' This expression for the logarithm of a product is explained, as a direct

tousequence of the defimition of # logarithm, in texts on college slgebra (see
footnote 1, p. 73), |

: “\'

N\
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8. The derivative, with respect to z, of the loga
{the logarithm to the Napierian base') is unity divided by s.

Thus
' dlogz _ 1

dx e

9. More generally, for the logarithm of a funetion ¢ of z, the

rule becomes A
dloge Ide
—_— - — s
dx v dx ¢(\A
. . e\
where v is a function of z.  \J

10. The derivative of the logarithm, to some bam“(qujh-_:-.r than e,
such as b, of a function ¢ of  is given by the myé?)

\

dlogyv _ 1 di )
A Y

V4

11. The derivative of a variable poi{'ér of the Napierian con-
stant e, represented by the varighle/exponent », where » ia a

function of x, is o\ o7
derQN ;w dy
T
11la and 115. As quu\ial’éases of rule 11
’ x"‘;\ e _ .
N\ dx
and, where £ i’s:a, constant,
A/
O der® '

N
12&1‘116 derivative of a varizble power of any constant b,
gepﬁscnted by the variable exponent », where v ig a Junction of
4 5;. 3
M\,:‘.;, 18
\ } oo
dax
'The Napicrian, or “nalural” base of logarithms is approximately
?,71828183_, uswally designated by e, 'The symbol “log,” ag used in theoret-
ieal analyszls_, customarily implies the base e; for any other hase, such a3 b,
the syjmbol ig loghl; but, by exeeption, the base 10, frequently used in com-
putation by logarithms, is oflen not explicitly attached to the log symbo!
{see footnote 1, p. 730,
_ 7inrules 10, 12, 124, and 12b, the symbol tog, ¢ (or log, b) is an entity by
itself; the log operation does not “cover” anything after the ¢ for b). ’
 Bee praceding footnole, ’

b
T = (log, B)b*
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124 and 136, As special cases of rule 12:

db
and
dbkx
E = ;'I‘C(].Ogg b)bk

13. The derivative of a varieble power of a funclion w, repree\
sented by the variable exponent », where v is also & funct10n~§)f v
N/

£l"s

dwt daw dv
- = wi—1 t \/
de = + og, wjw dz .\\
N
14. The derivative of a function w of », lei’l}é # is a function
of # with resgpect to x, 18 \’1\
dw(v) dw@
“dz dan “dx
15, The derivatives of the lmple trigonometric functions of v,
where » is o funetion of zeav

&K}

dcosg e 1 dy
T dr VI — o de
ci ta.n—l v
bz + vEd
dcot~1w -1 4
Tdx 1+ vide

S
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where the superscript —1 on the left side of tho lazt formuls
means “‘the angle whose cotangent is” », and analogously for
the three preceding formulas. These four functions, the anti-

“trigonometric functions, are not single-valued, but multiple-

valued; the formulas here given apply only to a single such
value. '

Not all the foregoing rules of differentiation will he needed
in elementary cconomic work; but they are brought together
here for convenience and cover adequately all cases of differontia-
tion in elementary mathematics. Rules for still mapé\ifibticate
functions can be found in treatises on calcuhis; thers also are
discussed functions that have no derivatives, “’éfﬁ".‘some or ail
points (for some or all values of z). R4%

Examples. Facility in the use of these Jules wili come only
with practice, and the reader should accugtdm himself to writing
down, by the use of appropriate rule érrides, the derivative of
any particular function encountered™ YI'hat more than one rule
may need be applied in a particulaf chse should be kept constantly
in mind, although many simple'escs are covered by & single rule.

Thus, for the function givés by Equation (16) of Chap. 111,

¢, ="02¢% + 1.5¢ + 7
rules 3, 2, 6, and 1 agply, giving

© en =%~ 049+ 15
T dg ’
AX
This is.pé'eciscly the result proviously obtained, in Equation
{24), byythe laborious direct application of the limit notion,

. Sumlarly, for Equation (28) of Chap. ITI,

. b
P \ — —_— 2
\ u=byg—_g
rules 3, 2, and 6 apply, giving
_du b

as found, by the laboricus method, in Equation (30).

These illustrations bring out the general fact that the rules
of differentiation can be used as a direct means of writing down
the limit, as soon as the basie function is known, in all cases
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ginal, f.e., the limit or instantancous-rate, concept. In those
eases, and similar cases, differentiation may for present purposes
be regarded as a mere tool for furnishing by imspection the result
that would otherwise need bo calculated by the laborious direct
application of the limit process (as at page 55). The following
chapters will cievelop further uses of the derivative—uses in which
important analytical operations not heretofore discussed will be »
tound {acilitated by the derivative concept. These and other
analytical uacs of tho derivative, rather than its mere equivalcrfcb
to the limit or instantaneous-rate notion, constitute itd great
power in applied mathematies. In these uses the der_igmﬁve fre-
quently enables us to perform symbolic operations that would
otherwise fall bevond our capacity for analysis, ."‘.,\\
Successive Differentiation. Before proceeding %0 these more
elaborate applications of the derivative, (:(;rtiiﬁ‘ further technical
points about derivatives can helpfully pex\dévcloped. Once the
derivative of  function has been folmd, it can itself be con-
sidered as & new function. Thus, ifythe given function is

¢ = ag?j.’:ié‘;bq + & (45)
its derivative {with respegb to q) is

S

\'\"*d—; = 2aq + b

and this is & ned fﬁnction, which. we have called ¢n.
Now, thc'an(’:tion
\:\‘ Cm = 2047 + b : (46)

also h'afs\a derivative (with respeet to g), and this derivative can
_be“wiltien down by inspection from the rules of differentiation.
CThus, :

dem _ o4 (47)

dg
Just a5 Equation (46) gives the marginal funetion related to'the
funetion of Equation (45), so Equation (47) gives the marginal
function related to the function of Kquation (46). Just as
Equation (46) gives the instantancous rate of change, in terms
f)f g, of the function ¢ defined by (45), s0 Equation (47) gives the

instantancous rate of change of ¢ a8 defined by (46).
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In arriving ab Equation (47), we could consider Eequution (46)
as giving a new or isolated function ¢, forgetting that e, is
itself the derivative of some other function ¢, given by (48).
But, remembering that ¢, is the derivative of ¢, we waxw appro-
priately say that (47) gives the “derivative of a derivative”,
(47) gives the derivative of a function which is itself ihe deriva-
tive of some other function. For this reason we sve justified
in calling the right side of Equation (47) the “second derivativ
of ¢ with respect to ¢,”’ and it is customarily represented by ‘the
symbol? O\

d% O
d¢ (..’}‘.

The reader will cbserve that the second derivative of a fune-
tion, with respect to an independent variabld, ean hoe obtained
merely by writing down the derivative (how advantageously
called the first derivative) of the functigh, by use of ihe rules
of differentiation, and then writing d6wn the derivative of the
first, derivative. This process is (;afli,ed successive diflerentration.
Thus, if oD

¥y = 834‘ 7:":6352 +3x -9 (48)

the second derivative, of ¥ with respect to x, is obisined as
follows: \

\Q% =322° — 12¢ + 3
and N
- AN 2
AL, . 3752 = 9632 — 12

'"\Q~
Mmje{&ei', this procedure esn be followed ne matter how com-
plieated the original funetion, so long as it is covered by the
~JXitown rules of differentiation. Thus, for

N * This is also 2 compound symbol; strietly, it should be read “the sccond
derivative of ¢ with respect to ¢.” It certainly should not be read: “d
squared times ¢ divided by d timas ¢ squared ”’—this statemoent would be
complotely wrong s a whole and in all its parts. The symbol is not a irac-
tion, and the operations of “squaring” and “multiplyiné” are noi involyved,
either in the upper line or in the lower, Mathematicians sometimes eall it
loosely “d second ¢ dg second 7: but the beginner will do well to adhere
rigidiy to the reading “ the second derivative of e with respeat to g, and thus
constantly remind himself of what the symhol precisely means,
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y = log (222 4- 9)
ay L
dr 22249
gy =1 4 =827 436
T T ¥ Yo e T @ T oy

Suecessive differentiation can manifestly be carried beyond
the second s and subject to our ability to caleulate the
suecessive dorivatives by using the rules of differentiation or
otherwise, rlerivatives of any order can be found. The firgby*
derivative is =alled that of the firsé order, the second derivatiye,”
that of the sesond order, and so on.  Thus, for the above 'fu,t‘lﬁﬁon

y =8z — ba* + 32 — 9 A§~@&
derivatives of the first five orders are! ) T
%:3%L—mmfgﬁ
42y 1::’}
d~—$2 = 96562 — ‘1.’2.;“ "
A% : 3\
ﬁi = 192§
d*y & )
— ={N92
AN
s

The Expansicﬁ.«\of 2 Function of One Variabte. The notion we
havo just acq\{’a}bd of derivatives of second, third, . . . order, or
“higher d%ii‘.v’a.t-ives,” will now be applied in order to display
& devic@.: that is as important in economiecs as it is in physics.
For thid pu rpose it is convenient $o introduce a different notation.
Ve we wish to express the fact that a funectional relation exists
between a dependent variable y and an independent variable
%, we simply write (scc page 7 and pages 68 and 89)

y = f(z)

"An intercsting fact appears in the final equation: whenever a function,
such as Equation (48), consists solely of the sum of positive integral powers
of z (each poszibly multiplied by a constant), auceessive differentiation can
be carried 1o point, where the derivative of a certain order, the order one
Bteater than the highest power of x, is zero.
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If sueh & function possesses derivatives of the first, sceond
third, . . . order, we denote them by f'(z), /”(z), /"(2), . . . |
8o that

dy‘_ ' dey it 523_?5" e oF
ge = 7@ o =w, g =), ete

Let us return to the straight-line demand law sheady dis-
cussed (where the present b is —a divided by the old 5} {page

61,
Chart 28) and rewrite it in the form O

g = f(p) = o + bp, wvherea > 0,6 < 0 o\“}'
N\

dg - A\

&fg =i p==0 AN

Y
L &

Then,

Now we choose a particular point (po, go) th&t’li% on thad straight
line. If we increase the price py by a small amount, say k, we
may represent the changed quantity oéQ]H, changed because of
this price increase, by x\

N

o+ 1) = a + blpok ) = (o) + hf'(py)
Manifestly, this result mﬂnot hold for a nonlinear demand
law. TFor instance, in theltase of a parabolic law
g=Ff(p) =a ~E—bg"{’+ ep, wherea > 0,5 < 6,2 > 0
we find that \\
a*q

g
(p) =l = p 19 , ipy = 29 _ 9
) (P)J.\ dp 0t 2 and () s
Again']‘gﬁ.\i}'} fix on any point whose coordinates (ps, go) satisty

the demand law under consideration, and see how the quantity
gy iSaffected by a small inerease 4 of the price. We have

@+ b(po + k) + e(po + £)?
@+ bpe + cpt + (b + 2epo) + h%

= Fo) + 1500 + 2 )

The student will observe that, although we have now arrived
at a result that diflers from the one obtained in the ease of the
linear demand funetion, there is nevertheless a suggestive family
likeness between the two. The question may arise in his mind
whether all types of functions ean be expressed in this con-
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venient way, simply by adding a sufficient number of terms of
similar form, to wit

o+ 1) = o) + 2 o0 + £ 7 00)

h“i is
-+ mf pa) + + - +1—23 """ :"Wf“(’pﬂ)

For many types of functions the answer is negative. Only a
restricted class of funetions can be so expressed, All the more
important is it that, smong all those functions which cannot bé
so expressed, there 18 a very large class that can be approzimafes,
in this manner. This means two things: (1) by adding morsand
more terms of the form A
B _ P\
1 9.5~ n fpo), n=12 3{9,’%%\

we can, in the case of this large, but lmited alaks of functions,
never reach the exact value of f(pe + A); bu‘t&@)’ as we go on add-
ing further terms, or, as we go on in(‘.-lliiéi::;l\ﬂg the number #, we
gob nearer and nearer to the exact vaulne.! The scries, known

L

as “Taylor’s serics,” N\
. ko, § ‘hj ;rr
oo+ B} = flpa) + Tf (po) "1‘7:1.—230 {pa)

3
& e+ @)
™ .
1 an example will help the student to grasp the cssentinl point.  Consider
t]l,e SUIT '..:,,
R O AR

It Is easy to Bee that, ag we go on adding further terms of the same type,
5 st'e&dﬂ.‘r"ipproachcs the number 2, though it never reaches 2 however many
terms seenadd.  Therefore this series is called an énfinite sertes thut “eon-
verg@siiy 2. The five terms written down already take us to $!4s. I_Fwe
'E*QP"it that, wo are indeed neglecting an tinfinite number” of terms.  But
4 sum of this infinite number of terms amounts o only 34 of the value we
m at, and for many purposcs, especially iu economics, an “error” of this
order of magnitude need not causc concern. The general criterion of
eonvergenee in this sense may be stated as follows.

We call & series convergent if, having chosen a certain term, say the
wih, we find that the k terms subsequent to the mth [the (m -+ Lst,
(m +2) ., 1, however large we may meke the F, sum up {0 no more than
& bumnber e, which is small encugh to be neglected.  IIow small the € actually
has to he in any individus! case depoends, of eourge, on the purpose in hand
and also on the standards of the investigator.
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can be extended indefinitely, by adding further terms; it is an
infinite series of terms. But we may stop after a number a
of terms and neglect the remainder, provided we zre content
with the approximation thus attained. We cannot here go into
the conditions that a function must fulfill in order to be amenable
to approximate expression, “‘expansion,” by a Taxlor series.
This method of approximating the value of 4 function in the
neighborhood of a given point is useful only if the number
of terms required for a reasonable approximation is not Lo greaf.
In practice, cconomists as well as physicists have degeldped a
habit of stopping at the term containing the firsi defivative and
simply wriling, as approximately correet, (‘.'}"
JPo + ) = f(po) + f (po) O

This procedure which is known as erpaddding « function and
neglecting second and higher powers (qjx’.@.‘of GOUTSE resupPOses
not only that the function in questioh ‘possesses a Tuylor series
that expresses it and is convergemb,” but also that this Taylor
series converges very rapidly, Mhe student wili perceive,
however, that the risk involved is greatly reduced if % is very
small. 1If, for instance, wei are investigating the elfect upon
quantity demanded of & small increase in price, such gz may
occeur in response tozthe imposition of a small tax per unit of
the commodity undar consideration, we arc presumabiy within
our rights if we\_ehuate that effect to the small ineresse in price
multiplied by{the value, taken at the old price, of the derivative
of quantityCAvith respect to price. Whoenever the demand
functionignot lincar, this can be only approximately true. Bub
in %:fdinary circumstances it will be approximately tie, if the
ingfease in price is small enough, though not otherwise. T'his fact
ifimportant to remember because of the serious limitations it

theory. Taxes, for instance, are nof usually “very small”
in real life. . '

Differentiation with Respect to Several Variables. A further
type of diflerentiation, somewhat analogous to suecessive
differentiation with respect to a single independent variahle,
is of importance for certain problems in applicd mathematics
(including some problems in economic theory) in which the

! Bee preceding note.
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given dependent variableis a funetion of two or more independent
variables. Cuonsaider the case of iwo independent variables, and
lot an econcinic illustration take the following form. Gross
revenue frora sales & can be represented as a function of quantity
sold g and prize p.  We assume for present purposes, what may
well not be true in economic reality, that p and ¢ are independent;
pis not a function of g, ¢ 1 not a function of p, and both are not
functions of # third, and fundamental, independent variable 2.

¢ = pq (58)\

We may gef the rate of change of & with p, the derwatwe “of q
with respeet i p, as

'(

9@ '

L W
. O
and, in doing this, ¢ is treated as a consta.nt bel(saube it iz assumed
ﬁhat g 15 not u Manetion of, does not “vavy* with” or “depend

upon,” p. Vo emphasize this fact, a gegwsymbol is used for the
derivative, invalving the 8 in place of .-
Slml]aﬂy the rate of change of G \with g is

- =P
AN o

If we were ,mmested\m the derivatives of the second order, we
should find N\

O 20
x'\"’ 6}72

. \‘

flnce Q.iﬁ%ﬁumed not a function of p; and

Ny 0

= 0
aq

smnce p is assumed not o function of ¢. .
But suppose that, alter getting the first derivative with respect
to p, _
Qg =
ap
We.were then interested in the rate of change of this new func-
ton with ¢, ie., in-the derivative of 6G/dp with respect to ¢.

A\
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Obviously
a(8G/ap) _ 1
dy

because, for this purpose, ¢ is a variable. The foregoing clumsy
symbol is replaced by a new commpound symbol, which indicates
succcssive differentiation with respect to the two independent
o 1
variables ~
G
dap dq Oy
It does not make any difference which diffcrent-iai{isixg whether
that with respeet to p or that with respect to g, tgles place first,
the result for 8%G/dp dg is the same.  Thus, f&jﬁr Fguation(50),

G = pyg v (50}
differentiating first with respeet to p gmi,&\‘t-hen with respect to g
56 _"..}
dp, N/
N
onog
or, in the other sequenge™
8 G
‘05\ —_— =
dq p
® oG _
dgdp
This also yplies that

\O" 79p = 39 3g

a’ﬁ@’hle order in which dp and 3¢ are arranged in the lower line of

¢~the symbol is normally » matter of indifference.

)" Asa more complicated illustration, consider the funetion

¥ =50 + 6% + 3we® — 2% 4 o — Qyr 4322 — 9 5z — 9

! This symbol, like the other dervative symbols already studied, is 2
compound symbol; it means “the derivative will respect to ¢ of the deriva-
tive of @ with respect to p.” Ilis e derivative of the second order, because
there have been two stages of differentintion; but it differs from the simple
sceond derivative studied above, in that the two stages of differentiation are
not with respect to the same independent variable, but with respect to tW0
different variables (assumed independent of each other).
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in which 2 and z are assumed indeprndent of each other. Ditfer-
entiating first with respect to x

%Z"{ = 1527 + 1222 + 32* + 20 — 82 — 2

and then with respect to 2

Py

el 122 4- 6z — 8
or, proceeding in the other order : A

e\
ij = 6a% - Buz — 622 — 8z + 6 + 5 N
and » : '\\
¥ o .

azax—IQz—l—@z 8 S

a8 before, K70

Even further generalizations of this ‘pi?ogess of successive
differontiatics sve manifestly possible. Tj:"y is a funetion of more -
than two independent variables, gipeéssive differentiation is
possible with respecet to each (or a,}ﬁfénhmber less than all) of the
variables in turn.  Thus if y &% function of z, 2, s and ¢, all
ndependent of cach other, w¢'ean secure

&\J ¥y
’.\\ Ax dz 95 3
and this ultimatefelt can be obtained by differentiating with
respect to the:'ffgul- variables in any order we please. More-
over, in such\differentiation with respect to cach of several
variables, ;‘kﬁ:u than one differentiation with respect to any
of therg'ean, if needed for the purpose in hand, be included.

B&jﬁﬁl and Total Derivatives. If y is a function of two or
mezelindependent, variables, as in the foregoing, the derivative of
¥ with respect to one of those variables is called a partial derivative.

hug, if.

y = Flz,2)

where the symbol F( ) means “function of,” 8y/dz, treating z ag
constant, is the partial derivative of y with respect to 2.

In the preceding section, we have assumed that the two {or
more) independent variables are independent of each other and



106 RUDIMENTARY MATHAMATICS

of a third independent variable f. If now we assume ihat 2 and 2
are funections of some new variable {, the derivative of y with
respect f0 { can be obtained by the_foHowing procedure:

dy _dydz | dydz

dt  oxdi | bzdt

"This is called the folal derfvative of y with respeet to £ Clearly
the partial derivatives, with respoct to x and to z, enter mergly as
aids in getting the total derivative. Thus, if
y = ax’z + bxz? R '\“.\
and O
 z=3t—3, 2= 282 + 3t — I

dy ) A

ﬁ = 2ax2(3) + b22(3) + ar(M + 3) A IBre2(4 - 3)
and, as here z and z are understood aa\f.unctions of ¢, the above
may be replaced by a function of t];Q’ gingle variable |

%’ = 6a(3¢ — 5)(2 + 31 — 1) DIH@E + 3¢ — 1)°
+ a{3t — 534t + 31:3}133;(35 — B)(2¢% 4 3t — XM + 3)
which could then be Ejitﬁbliﬁcd. Or, the derivative might be
converted to an expsession in 2 and z alone by replacing ¢ by
(x + 5)/3; but, in, this result, z and 2z would still be understood
as functions of i \/

For many‘pravetical problems in economies, we regard the given
independentwariables, such as z and 2 in the £ oregoing section, a8
complqteb? independent. We are then concerned only with
pa-rtgla@; rivatives, that with respect to z and that with regpect to
z..\Bat in cases for which z and z are indirectly linked by being

‘f:ﬁnctions ol some other variable ¢, the fotal derivative, of ¥ with

¢ respect to ¢, may prove of central importance in analysis, LEven

a\"
\
\ 3

in these cases, however, the partial derivative, with respect to
@ or to z, still has formal significance and can be caleulated by the
rules given above,

The Homogeneous Production Function. Suppose that a firm
produces & product z by means of a number of factors of produc-
tion which, for the sake of simplicity, we shall reduce to two:
Let their amounts be z and y. 'The product may then be con-
sidered as a funetion of the quantitios of factors applied

z = flz,y)
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This function rspresents all the possible combinations of the
saetors by which any given z ean be produced or, as we may also
say, all the tevhmological possibilitics within the horizon of the
firm’s managemoent. It iy known as the production funeciion.
The student will readily pereeive that this production function
will have to fulfill cerlain eonditions if it is to fit the facts.
But instead of gotng into this matier, we shall consider a particu-
lar form of 1t ihat has played a great role in the literature of
theoretical economics during the last half eentury.

A funetion fix.y) of 1wo (or more) independent variables is said )
to be homogensous of the mth degree, if, for any number ¢ 9,

Fliz,ty) = ™ (z,y) \‘
t* heing, of course, a power of & Of particular impﬁw{tance for
economic theory is homogeneity of the first degréehbhat is to say
fniy) = fay) = &

Remembering the cconomic meanings ywe\have attributed to z,
z, and y, the student will have no d.jfﬁi:tﬂty in realizing that a
production function of this kind §ii;1iﬂ}r expresses the absence
of those cconomics or d.imcon_onﬁt’:a?t-hat may aftend a change
in the seale of operations or “eonstant returns to scale’; or,
to put it still itferently, su€h a production function means that
if the quantities of all faktbrs are doubled, trebled . . ., then
the quantity of produst’ will also be doubled, trebled . . . .
The partiality of many theorists to this type of production fune-
tion is amply adeounted for by tihe interesting results that
iollow from j€/» We shall consider two examples which the
student 1g b«iurid to mect frequently.

First, if\a production funetion is homogeneous of the first
degreashoth the average productivity of each factor (that is to
S¥rs and 2/y, the well-known magnitude which, in the case
of Yhe factor labor, iz called productivity per man-hour} apd
the marginal productivity of each factor (that is to say, 82/9%
nd 2/8y) depend ouly upon the ratio between the amounts of
the factors applied and not upon the amounts themselves.t
Lot us prove this for one of the factors, say, .

) “The average productivity is a much-discussed magnitude, purticularly
for the factor lubor, Thus, if # is the amount (in man-hours] of labor used

i1 : L
b producing outpul z, z/z iz produetivity per man-hour.
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The number ¢ can be given any value we choose, provided only
that it is not zero. For convenience, we choose £ cqual to 1/z.

Then we have
f(l’ﬁ)“-"‘(x) o

=10 L

The function f of two variables has been replaced b ,"f\ne fune-
tion ¢ of the one variable ¥/x. Differontiating p:-ﬁ lially with
respect to &, we have N

 {

0z _ ¥ de(y/z) 8(y/x) ¥ ’\ i 1
o * (E) * x_a(—yf-'c) o — F (\> e ( )( v’ﬂ’)
- ) ¥ iy Ay D7

- ¢ (E) z¥ (5) = £ (x)\‘

irom which

This proves our propomtlon,' F‘or 6z/ax the msrginal pro-
ductivity of factor z, is seen.tvo equal the difference of iwo terms;
¢ which iz a fun('tlon of| y/x alone by definition and ¢/, the
derivative of ¢, multiphed by y/¢. Thus neither y alone nor
alone occurs in the\explesqmn for the marginal productivity.
Only their ratio g¥@ entors.  Hence wo may set dz/8x equal to
some function, & el this ratio, as we have done.

Becond, ify: a “production function is homogeneous of the first
degree, thtd“the shares in the product that will go to the several
factors’s Amder conditions of perfect " competition will cxaetly
exhaust the product whatever the actual scale of operations.
Lﬁder these conditions the share of ev ery factor, expressed in

~\t911ns of the product, is equal:to the smount employed multiplied
\ “hy its marginal productivity. In our cage, the shares of factors
z and y accordingly are

Bz d az
ax a1t u ;‘a—y

and we have to prove that
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But this is precisely the case, if and only if the production
function in question is homogeneous of the first degree. In
fact, we have shown that :

o _ (nN_¥ (v
oz "”(g) x*"(g)

Henece :
3 oYY = o (¥) = 2 = o (Y Q
T T ¢ (.r) ye (:c =ET¥N: "
LN
On the other hand, we have {S\\"W
y i l“:"
&) S
%:L:U_F@f(_y_) &()
dy By ARG
Hence \\
AY;
22 (Y . \:}
Yo TV e NV
and therefore _ D

= = 274
ng:ﬁ-ya% =z y@i(% +y¢’(g) =z

which identity is a special /dade of what is known as Euler’s
theorem. Tortimately IOI(}}le so-called smarginal-productiviiy
theory of distribuiion, ,it"i‘s\not necessary that this relation hold
identically (for &11.\@,1&93 of the wvariable). It is sufficient
that, it hold in aneffuilibrium point.

A

¢

a4

O
"/



CHAPTER V
MAXIMA AND MINIMA

The Minimum of a Function. With the derivative a.vs&ilabha

28 a tool of analysis, a problem that prescnted itzeli{eivlier

{page 37 of Chap. III) can now be attacked wiii'}.;p\’ecision.

We can now find the precise value of a speciﬁq~B~yi:zpendent

variable z, which renders minimum (or maximumgy 4z the case

may be) a specific dependent variable g, whichras, & funetion of z.
In Chap. II1, in our study of the chosen $9t4l cost function

¢ = 0.28° + 1.5 {aﬁ' (16)

and the corresponding Chart 20, wh. feund that, for a fotal cost
function of that type, at some pg}nf“L on the cost curve, average
cost would be minimum (page 46). Although wo showed
that the position of L wquldh be determined by the point of
contact of a line through'® that was tangent to the curve, we
were there unable tnmc{zlculate precisely the value of ¢ {or of ¢)
belonging to L. Iafck, we examined the average cost function
derived from Eqp&tl\)n (16), and this average cost was

AN/ &=02g+ 1.5+~ (17)

N g
The cufye representing this function (Chart 21) appears to have
a mifivum point L; but, although wo could estimate the value of
gobelonging to this point as approximately 6 (page 47), we

~\had therc no means of determining this value precizely. We
noted, of course, that the L of Chart 21 eorresponds precisely
to the L of Chart 20; both represent minimum average cost
for the total cost function stated in Lquation (16). We are now
in o position to determine the ¢ (and thus the ¢ and &) of L
precisely. '

In order, however, to present most convenicntly the method
to be used, we shall for the moment suspend study of Equation
(17) and choose instead a fairly simple functional relation between
two variables # and ¥ to which we attach no economic meaning.

. i10
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The funetion = chosen iz represented by a curve that lends itself

readily to the kind of geometrical construction needed toexplain

the method.  Let ¥ be a function of z, as
y =02z — 156z 4+ 7 (81}

and the corresponding curve appears in Chart 39. We observe
from the chart that y appears to have a minimum value, at a

Y
0

1

1

10 Y

0.222 — 1.5z + 7, with loeation of tangent line and
minimum point.

0 .o
CRARY 39.—Gruph ;Kf ;’J.‘ Z
\\

point. ., fo;@bv&llm of x approximately equal to 4. The immedi-
at-.e tasl”({ i's:io determine precise{y'this value of » which renders ¢ a
Migdsigm 1

\Ehdnsing two points A(zyy) and Blzsys) of the curve of
Chart, 39, preferably both to the right of J, and following an
nalysis similar to that of Equations (16) and (20) to (23) of
Chap. 111, wo find

an;ln this discl}ssioll, we zhall think of the minimum as t._he lowest point,
not as a paint that is as low as or lower than other points. The more
f}ileml- not-.ion of minimum, which we can exclude here, has censiderable

Oretical importance, -
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lim &y _ 04z, — 1.5
azr=0 AT
as the “instantaneous” rate of change of ¢ with 2 at A4.
But we learned in Chap. TV that
. Ay dy
Iim == = 22
Qirfg Ar dx

and direct application of the rules of differentiation to Equafion
(51) would have vielded -

f RO\
% — 04z — 1.5 o 7 52)
for which the value at A, where z is z;, is ) \ R
\
0.4z, — 1.5 ?)

Use of the derivative thuscbviates the I@l{&ﬁous tasgk of imagining
a sceond point B fer which zis z, + A% ‘making all the computa-
tions of Ay and Ay/Az, and then takihg the limit as Az approaches
zero. R

Howoever, that lengthy a-ng{yéfs enables us to observe certain
important facts. The ratios Ay/Azx 1s the slope (sec page 12} of
the line AR, ie, of the'secant cutling across from point A to
point B of the curve (€hart 39). Ag now, in the limiting process,
B slides along the ghibve toward A, this secant line rotates about
point 4, taking“shch successive positions as AB, AB', 4B
As B approaches A, <.e., as Az approaches zero, the inclination f
of the secantfthe angle between a horizontal line AH and the
secant ABYbecomes smaller. Ag B gets closer and closer to 4,
the sdeant AB approaches a limiting position AT, which is

called the tangent to the ecurve at point A. Moreover, the

itcknation @ approaches a limiting value ¢, which is.the inclina-

)

AN
\

\ )

Aion of the tangent line AT,

We have observed that Ay/Az is the slope of AB, and by the
relation between slope and inclination, we have also

Ay
i tan @

Moreover, as AT is the limiting position of AB, the
slope of AT iz the limiting value of Ay/Ax ag Az approaches zerd.
But this means that the slope of AT is the derivative of ¥
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with respect to =, evaluated for z = 1. Thus

Rlope of AT = @: for =1
duw :
= (}4dx; — 1.5

and
tan ¢ = G4z, — 1.5

Furthermove, by taking B left of A but not left of J, a similar
analysis could be carried out and would lead to the same result.
Here Az would be negative, and the slope of AT would come outy A ¢
positive as hefore, Likewise, the analysis can be fol]owe{d\“'
through for 4 and B left of J; but hore the slope of AT, Whﬂc
still equal to the derivative, would come out negative. ¢ '

We have here a general finding: the slope of the tangent line
AT, to a curve at a point A, is the derivative (of tbe dependent
variable with respect to the independent variable) Wi'the point A
This slope of ihe tangent line at point A is sgm}times called the
direction of the curve at A.

Thus, recapitulating, for the given Fgnation (51)

y = 0.2 — 1*5;’{/-1' 7

N

we have, by the rules of differentistion,

0 &

Y04 — 15
T N \ . . -

Wo can at once caleulate the slope of the tangent, the direction of

the curve, for angapoint for which @ is chosen, Thus

pid slope is
AN\ _ 0.5
”uj\ 8 1.7
NN 6.2 0.98

./ .
afid, Although the graphic analysis took A to the right of J, the
resuits are equally valid to the left of J

for = slope is
1 ' —1.1
3 —0.3
28 —0.38

B ! .It' is assumed here that the funetion is of such form that the derivative
BRIst " at point A.
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We note that, for these latter values of z giving points cloarly
to the leit of J, the slope is negative; hence the tangent of ¢ i
negative, ¢ is greater than 90°, and the tangent line slopes
downward to the right. On the other hand, for the values of »
that yield points clearly to the right of J, the slope is positive;
hence the tangent of ¢ is positive, ¢ is less than %(° and the
tangent line slopes upward to the right,

We may fairly infer that the tangent line is horizontal and its
slope is zero, at the lowest point J of the curve. That this ton-
clusion is plausible is indicated by the numecrical tests, fomgelected
values of z, made above, A somewhat stronger indi(.;;ﬁion of its
truth flows from the following considerations. Supyose A had
been taken only very slightly to the right of J (il then B had
‘been taken to the right of 4. As J is thé minimum point
{(minimum defined in the sense above), the Jurve must be rising
to the right of J; hence, for A4 and BNd%' chosen, Ay must be
positive and Ay/Ar must be positive/HyConsequentiv no matter
how close B is to A (so long as it jwtight of A), Ay i3 positive and
Ay/Az is positive; as B approachésyl, Ay always remaing positive,
though it may become exqeg%ciingly small, and Ay/Ar remains
positive. Hence the limiting value of Ay/Az, the slope of AT,
is positive. N

Now, if A and B are taken to the left of J with & to the left
of 4, Az is ncga-t-ilve’\but Ay is positive, becanse J Is & minimum
point and the{elrve is declining (a8 we pass toward the right
along the cyrye} on the left of J. Fach point of the curve is
lower thawthosc already pa.sged; hence A iz lower than B and
Ay is pésitive. Therefore Ay/Ar is negative, no matter how
close~B.ds to 4. Hence in the limit, as B approaches 4, the
SIE’Q’& of AT isnegative. We may imagine this argument followed
dhrough even though we took A exceedingly close 1o .J, but still

(NTett of J; it would remain true thai the slope of A7 would be
\ 3 negative,

We infer then that, ¥ J is truly the lowest point, the slope
of AT is negative for A left of J and positive for A right of J.!
We further infer, since at J the slope changes from negative to
positive, that the slope of the tangent line al J is zero. This gives

! I.t is a.ssun:usd here that the curve has only oene minimum point and 0o
maximum, & 18 trie of the simple function in Equation (51}, If there wore

other minimum points, this would be called a relotipe minimum (sec belo®;
p. 1213,

~
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us the key for finding J precisely. As the slope of the tangent
at J s zero, ihe derivative must be zero for that value of z
which specifies J.  That value of z is therefore found by equa ting
the derivative to zero and selving for

if—g = 04r — 1.5
s

15

= 0, for &

Thus the exact minimum for y as defined by Fquation (30))

oceurs when » {s 3.75, and subatitution of this value of z ig’thc'
original equation gives

y = 0.2(3.75)! — 1.5(3.75) + 7 J\"”
= 383¢, — 4.19 approximately )

Thus, point . is (3.75, 4.19). N
We now return to Equation (17) o\
o =02+ 155

and apply the foregoing metbbﬂ to determine precisely theoq
belonging to point L of Cha#h21. We first differcntiate &

A
¢ dE 7

then set this regulﬁh équal to zero, and solve for ¢, getting
9.\
Y =35 .
'\'\\w g = 5.916 {(approximately)!

We estimated, in dis.cussing Chart 21, that ¢ was 6 for L; we now
l%ﬁgv”’tha.t ihe exact value of ¢ at L is 4/35, which is approxi-
mately 5916, We know also that this same g corresponds to
point I, of Chart 20.2

" The positive root wlone is taken, as the negative Toot has no ccononsic
significance, Actually, Fquation (17) is incompletely rnpresentod.by Chart
2L another branch of the enrve appears helow the negative 04 axis and left
of the legative GC7 axis, but that branch has no economic meaning,

2 A Toms legant determination of L, resting upon the derivative method
bt telereing 1o total cost rather (han average cost, is also possible.  The

N\
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The Maximum of a Function. We consider next, for con-
venicnee in geometrical analysis, o function somewiai different
from that of Equation (51), but one to which we attach no
economic significance. Tuake ag thiz new function

y=—025* 4+ 152+ 7 (52)

Btudy of the corresponding curve in Chart 40 shows that for
some point J ¥ is maximuin.  As belore, we can readils establish
that the slope of the tangent line A7, the direction ot the 011';‘\3
at any point A is the derivative of y with respect 1o« Lg this
case, we observe that the curve is rising (its direction is Hwitw e to
left of J and falling (its direction is negative) to rightoiJ. But
the chart suggests, and reasoning like that of the ﬁomwmg seetion
indicates, that the tangent loe at Jf 1y houzou,t.-&l,\‘lth slonie 1s zero.
Hence, for a maximum point J, the same epdition holds as for a
minimuim; for the maximum point, Bhe deuvat:"P is zero.
Thercfore to find x for J, we sct \\

dy ¢
gn = —043:—{— 1.5

'S
‘..
R

corresponding total eost Funeti c(n is {p. 12)

8 P02 4 157 + 7 (16
and study of Chart 2&{{1 Chap. ITT showed thal average rogt would be
winimum for an nut&ut, represenied by some point L of the cusve such that
the line OF would\ho tangent to the eurve at T (p, 46), At point L, the

slope of OL is a mm]mum Let g1 be the output at L. As OF gocs through
0, the slopeof f?}ﬁ iz

A0 o
'\1. §1

) Wh(}i\ # iz given by Equation {18} as

., er =027 + 1.8q1 + 7

9 AJ~.0 the slope of a tangent line ot L is the derivative

de
dy
evaluated for g cqual g1 These two values of the slope must be iden iical
_ 024 + LAy 17
741

=04y + 1.5

0.4g + 1.5

giving
O4g! + 1Ay, = 0.2¢° 4+ 1.5 + 7

and from thiy, onee more ¢, i3 +/35.
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equal to zerc and “solve’ for #. The result is 3.75 for z, and
the corresponding value of g, about 9.81, ean be found by’ sub-
stituting this value of @ in the original equation which gives y
as & functicn of @1

I

10

L I I LA 'I. I I I I t
0 R 0 ¥

- s 8J
Crismr 40.—&{\(6’6{ a funetion showing a maxmuin,
\

.We conclude t-l*\i&i’t;cither a maximum or a minimum point is
}'lfelc‘led when 74 ;f:d:’): is zero. Whether the point is maximum or
nimmum Qﬂ\il readily be inferred from the ehart; Chart 39
unm‘istak%l‘_sr' stggests 2 minimum and Chart 40 equally shows &
I{I‘Ui”}l{ilﬁ {p general, this graphie test should be made, espe-
Clﬂllji\,ﬁs it involves no additional labor if the student follows the

, That these results give x identieal with that of the forogoing section Is
hﬂefely the aceidental consequence of the close similarity between the two
nagie functions.  If our hasie funetion in thia second instance were

y = =8zt 12z — 8
we shonld get.

dy _
dr
#nd henco J ig aq (2, 4).

Fan

—8x + 12, which = C forz =2
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thoroughly wise practice of plotting the curve to secure a visual
record of the funection.?

Distinction between Maxima and Minima. A dofinitc analyti-

cal eriterion can, however, be set up to tell wheilior the zero

derivative yields 2 maximum

dy or aminimum, TLiseriterion

dx involves thoe rate of change in
er the direction (slope) of the

tangent linc AT, az 4 paisses
ak from left to right glong the

eurve, N\

Referring to.Ghirt 39, the

L—— case exhibiting\a roinimum, a
8 X striking fedtitre of the curve
is that\ibie concave upward;

its (311\'\&;&‘5111'0 is such that the

holldw side lics shove the

-2k ' Yagkve. Tt is like o howl rest-
Nihg on its buse,  On the other
hand, the curve of Chart 40

Caart 41, —Derivative of the functien)
of Churt 39, R

o8 i8 concave dowaward; its
curvature is such that thelollow side is always below $he curve.
It iz like an invertedBowl,

The schedule of'-sfbbes (page 113), for various values of x giving
various points A€ the curve of Equation {61} {Chart 29}, shows
that the slopg 1§ o large negative number for A well to the loft of

1 We devtlaf Fed earlier (p. 69) a utility function
' u = B0g — 4{ 592 (29)

@}{O\‘Q\ﬁ‘ Chart 32 ou p. 68. The ehart indicates that, for some value of ¢
agval approximately to 150, u is & maximum. From an economic point of

g~ricw, the significance of u to the right of this point, where w docreases 88
“g inereases, 1s less apparent than to the left, but we may perhaps imagine

a siluation in which more of a eommodity 18 forced upon the consumer
after he has becomo satialed with il; his utility wight then diminish, as¢
inereased beyond the point (maximum w) of saticly.

We proceed now. to detormine precizely the value of ¢ that makes % of
(207 a maximum. ’

and this is zero for ¢4 = 150, Thus, our nbove estimate from the chart 11rms
out to be precizely correct.
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J, becomes & smaller negative number as A moves right toward J,
hecomes a small positive number as A passes just to the right
of J, and becomes g larger positive number us A passes farther
to the right. In other words, having duc regard to signs, the
slope, .., the derlvative, appoears always to increase as 4 moves
along the curve from left to right.

This is made more emphatically apparent in Chart 41, which
represents the derivative of Iiguation (51). Chart 41 may he
regarded as an image of Chart 39, the image relationship being

Y

10

i

R®. 1 £ [ L L L 1
0 \\ 5 0 X
CEare 4‘Axr’i‘angc,nt lines of various slopes for the curve af Chart 39,

that OLERs ehiart shows the derivative of the function shown in the
UUlPl Ebart In Chart 41, the “euarve” representing the deriva-
T\RQ of Equation (51):is a straight line, starts at — L.5 for @ cqual
0 zero and rises toward the right, cutting OX for z equal to
3.75. This meuns that the derivative of the funetion in Foua-
ton (51) always increases as z increases. Moreover, as the
twrve of Chart, 41 is a straight line, the rate of increase ol dy/dx
is eonstant,.

Rememboring that

gg = tan ¢
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we can construct, from the formula for the dertvative given on
page 115, a table of values showing ¢ for various » (Table 12).
As p 13 measured counterclockwise from the posiilve (right)
direction of a horizontal line through A, the tahle shows that
the linc AT is fairly steep, and sloping downward o the right,
for x zero; becomoes less steep, but still slopes downward to
the right, as z approaches 3.75; is horizontal for & ai 3.75: slopes
upward to the right for all = greater thun 3.75, and beédmes
mcreasingly steep as x gets larger after pussing 8.75. 4 Heveral
of these tangent lines are ruled on Chart 42, which\i‘ép}miuces
the eurve of Chart 39. . \J

\
"\
- | S 1 .
Tspup 12.—VALUES OF ¢, THE INCLINATION OF TTIR TARCEYr Lise 10 1HE
Cunye oN CHART 39, Fou SpLEcTED VALDES OF £, A& COMPUCRD FROM THE
1 “a
Dermvarive or Mgrariox NGB

z o | ONY
_ Y \ N

0 —165] 123°41
i <14 | 132ei

2 $90.7 145%
2 (N-03 1estlw

3.5 0 00’
A 0.1 5°43’
{m’\5 0.5 26°34"
\'\ 6 0.9 4159

\ 7 1.3 52926 \

The charfand the above considerations indicate that the situa-

Lion whigh affords a minimum (in the narrow sense defined
aboye)) the situstion in which curvature iz of the conecave-
wiward lype, is one for which the slope ot the tangent jine

) Jthe devivative) dy/dz increases, with duc regard to signs, a8

“\\the point 4 passes from left to right slong the curve.

' Without going to the trouble of drawingtthe image chart (like
41} or caleulating various values of o (like Table 12), we cal
determine analytically that the slope of the tangent line is
increasing. Call the slope m, where:

. ay

m=a‘5=0.4$—1.5

To determine whethoer m is increasing, we need merely to find
the rate of change of m with x; if that rato is positive, m incresses
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with @, if negazive, m docreases with z. By the discussion of
Chap. TV, page 89, the rate of change of m with z is

@7, which = 0.4
Thiz is positive; hence m increages with 2z, the curve is concuve
upward, and J is a minimum and not & maximum.!

Farthermore, @s m is the first derivative of y with respeet to z,
dm/ds is the sceond derivalive

o K
dm 4% _ o4 o~ N\
dz  dx? ’ W\
The condition lor a minimum may be restated in thesey %ef;hq
The point whers dy/dz is 7Ero vields a minimum for y&{ﬁ” Jdie?
i positive (at that peint).

By a similar reasariing applicd to Equation (52}@11(1 Chart 40,
we find thal Lhe curve, which ylelds a ma.xim}f\rﬁat J, is concave
downward; the slope of the tangent ling\with due regard to
signe, decreases ag A passes from left tg:,riglit. ;

N
%

m= o g+ 15
el
and

which is negative. Hence the condition for a maximum may be
stated: The ]:Gllk\\‘heTe dy/de is zero yiclds a maximum for ¥
¥ d%/dz? i negalive (at that point). Here, and in the above
statement fg}\\ﬂwe minimum, the sign of the second derivative
s a suﬁl@lent condition for determining the maximum (or
minimym s but it is not a necessary condition, as can be shown
torr\a'iam functions.

SeVeral Extreme Points. A minimum, or a masimum, Is an
extrene point of the « curve: st that point the curve ceases moving
vertically, as we pass from left to right, in one direction, down-
Ward or upward, and begins 1o move in the other. The fune-

It dm /e hud not been coual to o constant (if y had been a more con-
Plicated funetion of z), but to a variable funetion of = gich ag 3z — 8, we
shoalgd have necded to find the value of dm/de lor the specific value of wat J
ad noticed whether the result was positive or negative (sec p. 122).
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tions considered thus far are of a simple form which v igld, in each
casc, only one extreme point.  TMunclions are readiiy conceivable,
however, which may have a succ-ess_ion of exiremo paints,
alternately maxima and minima.

For example, suppose the funection is

y = x* — 18z + 104z 4 10 {83}
represcnted in Chart 43. The extreme points are given when,
W _ 300 _ 364 + 105 ‘O
dx ’\S
is zero, 7.e., when _ Ao
t=25and 7 e \ N
As ~
2 4
g—xz = 6z — 36
Y

the first of these points ¢ = 5 yieldga'maximum, an the second
r =7 yields a minimum. ThigNdet finding isz spparent, of
course, from the chart as plotted.«

With a still more complicated function than that of Equation
(53), a larger number ’m_f“:éxtreme pointg might appear; for
funetions of this type,.a, sum of terms involving positive integral
powers of z, the magimea and minima would appest alternately.
Cases of thig soxt Q‘mf, however, be formulated for which.all zero
values of dy/dx hb'not necessarily locate maxima or minima.

In considering a curve having two or more extreme points,
guch an a.mg‘-}l\ysis as that of page 120 and Table 12, if made at all,
Wouldxq%d be confined to the vicinity of each single extreme
poinhIn studying variations in ¢, e.¢., In the vicinity of one
of\bhé extreme points (say, the left-hand maximem), we mush

¢ '{’m’tf allow 4 (or B} Lo range up to or beyond the next (adjacent)

N
%
\ )

“extreme point,
Points of Inflection. Tn studying the funciion of Equation
(53), we found the second devivative tock the form
d*y 2
Y= br — 28 54
T =6 — 36 (54)
For z = 5, this is negative: and for z = 7, it is positive. In fack,
d?y/dx® is 2 function of z and therefore changes as z changes
Equation (54) is represented {on & chart with = measured
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horizontally snd the second derivative measured vertically)
Ly a straight iine, inclined upward to the right and cutting 0X
at' . . .
z =9
For & less than 6, the sccond derivative is negative; henece the
ewrve of Equaiion {53) is concave downward. For z greater than
6, the second :levivative is positive; hence the eurve of Equation
(63) is conenvy upward. Therefore, for & = 6, curvature of the

e0f

100

PAS :
§ ,\": 4] 10 }(

CHART 43~ F3 \Lblon of the euhie-parabola type, with potut of inflection.
enrve of hq«wtmn (53} (Chart 43) shifts from concave downward
to FOHQ&Ve upward. Such a point, marked # on Charf 43,
18€800d 5. point of on, Aection.

e provisional condition for determining a pomnt of inflection

]b thUS thq‘[_,

dy _

7ot =
In simple cages all one needs do, to find the points of mﬂcctlon,
15 to find the second derivative, set it equal to zero, and “solve’
for Z; but the zero sceond derivative is not asufficient condition
for g point: of inflection, as & properly formulated illustration

AN
Y A N



124 RUDIMENTARY MATHEMATICS

would show. For the simplest type of function here shown,
there will ordinarily be a point of inflection between each succes
sive pair of maximum and minimum peints, and the total
number of points of inflection will be one less thun the number of
maxima and minima combined.!  Of course, points of inflcetion
may occur in functions that do not display either maxima or
minima.

The earlier example studied above, Equation (16), had™o
points of inflection. For that case the second devivative Was a
constant and, thus, could not cqual zero for any vilne of g
The sign of the second derivative was therefore bmws fixed,
that is to say, always positive. DBut in the mér Y complicated
functions, such as Equation (53), the sign of the/€rond derivative
changes as x changes. Hence the need Nl 1L purenthetical
phrase “at that point” in stating the cvifetion, in terms of the
second derivative, for distinguishing’ bitween maximum and
minimum (page 121). ~\

Case of Two Independent Vanables. The foreguing analysiz
for maxima and minims appll’eq to the cage in which the given
function depends upon as &mgle independent variable. For
certain important practiml problems, maxima and minima are
sought for a functions that depends upon mere than one inde-
pendent variable. XRO illustrate the procedure, only the case
of two mdepem{egb variables will be considered. Hupposc the
given functmn, is

g'} 4 y = F(ze)

where sl:(\ ) means “function of.” Both z and ¢ arc under

to be independent, and to be independent of esch other.
GT&PIHC&HY such & function would be represented by a surface
~ 7NH three-dimensional gpace. In the case of a simple function of
) ome variable, the graphic representution yielded a curve in a two-
diménsional plane, with the independent variable measured in
one direction and the dependent variable measured at ri ight angles
toit. Here, the two independent varinhles z and 2 are measured
at right angles to each other in g plane, and the dependent
variable y is measured at right angles to the plane, 7.¢., along &

! The possibility that, even for a faj rly simple function, the above condi-
tions will not prove concluswo should be horne in mind,  For fuiler discus
sion, consult texts on caleulus,
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third dimension. Manifestly, if we had three or more inde-
pendent variables, there would be four er more dimensions
altogether, and the graphic figure would involve a four-or-more
dimensional space, such a space as is beyond the reach of human
experience,  ilthough a solid three-dimensional model can in
fact be constrizcied for the surface in the case of two independent
variables, or it can be represented tolerably, by proper use of
perspective, upen a8 two-dimensional plane such as a sheet of
paper, graphicul alda are imperfect for cases of functions that

depend upor three or more independent variables. Even for\\
the three-dimensional, two-independent-variables case, graphip °

representation [requently takes a simplified form in which }ta]}'izius
sections of the three-dimensional surface are pictured as cutves
by assuming sclected constant values for one of the yaridbles.
For cxampie, if the given funetion is \%
y = az® + be? - ¢ :’,\\‘

where @, b, and ¢ are fixed constants, the three-dimensional
surface can be plotted in a solid model if the variables x, 2, and y
are measured from s single origin 0 valé;r'l'g three mutually perpen-
dleular axes GX, OZ, und OY. We'hay, however, get in mind
the main characteristics of thésglrface, if we note that fixing
the value of ons variable, L,er %, gives us a function of a single
variable, gives ¥ as a funefion of ». Thus,

L\
forz = QN y=az®+ ¢
For 2828, y=azr*+b+c
fnnys{; 2, y=ax? 446+ ¢
ton% = —1, y = azx® + b+ ¢; ete.

Previous, af‘h)’ shows (page 32} that cach of these simple func-
tions iFtprosented by a curve of the sort illustrated in Chart 44,
o giniple parabola. Accordingly, all sections of the required
Rurkate for which z is constant, sections that are, in other words,
D_a-fa.llel to the XOY plane, are parabolas. The various parabolas
Blier from cach other only in that their constant element, ¢, or
FH— & ordb + ¢, cte., differs; in this case the constant element
®merely the value of ¥ when x ig zero. .

In like manner, any section of the surface parallel to X0Z can
be found by Chodsing; fixed values for », and any section parallel
t Y0Z vy choosing fixed values for #. This process of describ-

Q"
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ing a surface piecemeal, by discovering the curves made by
selected plane sections across the surface, is laborious and s
seldom carried out extensively., Limited use of the process
proves, however, an effective aid in disclosing the properties of a

Y | ;

0 T Y

CrarT 4t.—Bections, parailel to XOY, of u parabolia ;‘su_rf :me..

three-dimensional figure whether or not we actually make 2
three-dimensional model or g two-dimensional diagram in
perspective of that figure. Fop the cuses of three or more
independent variables, involving surfaces in space of more than
three dimensions, the only satisfactory graphic too] is that of
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representation by sections. The figure in four-dimensional gpace,
for example, is described by taking three-dimensional sections
of the surface and thus producing figures that the human cye
and mind ear: visualize. '

Minimum Value of a Function of Two Variables. Consider the
funetion of ¢ of two independent variables « and » in the form

E=a -+ gu? — w4+ k? (55)

where a, g, &, and & are fixed constants that will be supposed

pozitive. This function is reprosentable as a three-dimensionala
surface, the pomnts of which are plotted by measurenients ,L\.’;f\“.
t, u, and v 2lung chosen ecordi- \
nate axes OF, OU7, and OF. T
A seetion of the surface paral-
lel to TOUT 3= given for ¢ as
some constant, say ;. Then

t=a+gu®— by + kel
=g 4 fad - Loy + gut (56}

I8 an equaticn in the two
variables ¢ and wu, with .
¢+ kvt — ey sad g the cons ey
stants. If these two comoa ' L
stants have the numerigdl® 4 &2 0 2 40
values 2 and 1, the cu 'x‘é’ﬁf Cramy 45.—Bection, parallel to TOT,
the section is &y given jn éhart of & parubolio surface.
#5—it is a parabola, f)r, a scction parallel to TOV is obtained
by choosing s C(){sb\ant wp for u, giving

\':\‘ t=a+gul — h + ky? (57)
which, if “oh’ah‘ted in the 70V plane, would also show a parabols,
but (liffgrtiht-l}r located with refercnce to OT as (67) eontains a
thl‘I‘rI\i;Iw as well as o2,

“¢/desire now to find whether £ has a minimum (or maximum)
value, whother some specified pair of values of u and » yield
& minimum, {(or maximum} for . So far as the scctional curve
[Equation (56)] in & plane parallel to TOU is concerned, we
already know how to get its “extreme.” Thus

di
du

= Zgu

N



128 RUDIMENTARY MATHEMATICS

and, as

d*

dar = 4
is positive (g having been asswmed positive) for w = 0 (and in
fact for all values of u), the point where # is zero vields 2 mini-
mum for {56). Consider now (57), the equation hetween ¢ and .

EEE = —h -+ 2w O\
dv
_ , _h .'\:\
=0, for v =gz S
and, as A\
(e I ¢
W = 2k w7

is positive (k having been assumed posi’rjvé) for ¢ = 1/2k (and
in fact for all values of v}, the poim;\\w'hcre #is B2k yiclds a
minimum for (57}. o\

But (56) is the form for { depefidént on w alone, when v is any
constant, eg., the const&nt’h.’/ZFE: And (67) iz the form for !
dependent on v alone, whemais any constant, e.g., the constant 0.
Therefore ¢ is a minimgniffbr the entire surface! whon u is zero
and v is h/2%k. ~

We now obsel'x(e,t"ila-t- di/du for (56) is the same as the partial
derivative of t«{ﬁh}respect to u for (55)

]
Likewigadt/dv for (57) is the partial devivative of £ with respeet
to 1\11“:&-’ (55)
O af

=\ — = —h -+ 2w

¢ ‘.\“

S ’

L\ W
)}
\ 3

ov

3

In practice, theréfore, we determine the minimum (or maximum)
of such a function as (55) by taking the two partial derivatives
d1/0u and 81/8v, setting them equal to zero, and solving simul-

' This eonclusion follows satisfactorily for a function of the excecdhlgf}"
simple form shown in (55). A more involved mathematical inguiry i
needed in determining the extreme of s morc coriplicated funelion, becatss
the foregoing conditions can be met though no maximum or minimam exists
The reader is referred to texts on caleulus for troatment of such vases and
is warned that the illustration used here was chosen intentionally to yield 2
minimum at the point indicated by the conditions.
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taneously to find w and ». Lo test whether the point thus found
is maximum or minimum, we observe whether both 8%/9u? and
9%/dp? are negative or positive.!

The Lagrange Multiplier. Frequently, problems concerning
the exstence and location of extreme values of a funetion of
several varishios are to be solved subject to a condition. This
type of problom can be conveniently dealt with by means of o
deviee that iz apt to cause difficulties for students in the perusal
aof otherwise simple pleces of economic reazoning. An example
will ilhustrate this technigue. O\

Huppose that a firm accepts an order for a definite amoynd of
produet 2. 'he bar ig to remind us that-in the problem Ao be
diseussed the amount of produet is not, as it usually sy 31 variable
but & given conatant. Also, we shall assume thaiproductmn
involves only two factors © and ¥ and that the prices of these
factors, denoted by p, and p,, are given to theXirm and remain
eonstunt during the rclevant time, It is¢réquired to find that
combination of the two factors which under these elrcumstances
will minimize the total cost of ﬁlhng .the'order. This eost prob-
lem differs {rom the ones that ha\re “been previously treated in
this book. Among other thmgb, *total cost € is no longer a
function of the quantity of ‘product to be produced, which is
now a constant, but only'ef the quantities of the two factors.
Moreaver, singe the fiprh#an choose only among those combina-
tions of fact(,n e “}n}’rhods of produection,” that lie within its
horlzon or pr(whu'hﬁn funetion {see above, page 107}, the mini-
mum of costs iNEfives to attain can be only a relative minimun,
e, g mmumﬂ\ telative to the posmbﬂltuﬂ offered by the produe-
tion fun for. The latter, therefore, is a condition that the
solutiont il have to fulfill and that plays an essential part in
the RFOC(‘&;‘E of arriving at the solution. Such additional condi-
\’ﬂfma are called side relations. 'Thus we have the cost function

C = ap. + upy

and the production funetion as side relation, subject to which

total eost is to be minimized

z = flz,9)

*The troublesome cases where these two second partial derivatives are
of opposite sign, or where one of them is zero, are ignored here,  These will
be found trasted in caleulus toxts,  See also footnote 1, p. 128
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which we write
z—flay) =0

. We now introduce this side relation into the cost function hy
means of the following trick. Manifestly, we car always add
zero to any number or expression, or subtract zess from any
number or expression, without altering its value. We ean CVen,
hefore doing so, multiply the zero with some numnbher i, because
zero multiplied by any finite number is still zero, The expres-
sion [2 — f(x3)] is equal to zero. Hence nothing proFents us
{rom muitiplying it by some number A, which e shajll ]\1?3\‘-'ev{:r,
assume to be positive, and then adding the rosult, to/'the given
cost function. Thus, R N
C = wp 4+ yp, + Mz — flaid]”

This is still & function of the two vatiables'z and . Tts mini-
mum value, if any, can be found b¥2the procedure we have
learned in the preceding section. E"‘Q\Héve

90 _ Ny

dr  RELY dx

¢ o3° \, Of(z,y)

Ty"?‘, By — ay

3

These two partial devivatives wo now set equal to zere, which
evidently vields, \i _

N _ - Hlay)

o B = A

N af{z,y)
O Py

Er}m these equations and the given produetion function, it

}ﬁl’l ordinarily be possible 4o eliminate the factor A, which is

-~ _gommonly referred to as Lagrange's multiplier, and to determine

N/ the values of z and ¥ that will minimize the tota] cost of filling
the order.t .

It remains, of course, to make sure whether oyr result spells an

extreme value at all, and whether this extreme value ig a mini-

) i ’I.‘he theory of Lagrange’s method js actually not so simple as the exposi-
tion in the text might lead the student to holieve. i ig felt, however, that

& tommon-sense preseutation will serve ihe needs of the heginner better
than would a more TiZorous one,
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mum or a maximum. In our particular case, this is not difficult
tofind out. A= has been scen at the end of the preceding section,
we shall have & minimum, if 82C/62* and 82C/dy® are both posi-
tive. Now '

FC _ ey
dz? dx?

and
N )

ayt dg* .
fince N is positive by assumption, these second-order parbi{;l\“
derivatives of € will be positive, il 9%f(z,y)/0¢* and &*f(z g /8y
are both nesutive. In order to see whether they arce ox fob, we
must ascerisin their economic meaning. We know® already
that af(s.y),/ 9 and 8f(z,y)/dy arc the marginal preductivities
of the factors 2 and y (sce page 107). Qur secang-order partial
derivatives are the first partial derivatives e these marginal
productivities. The former represent the " latter’s rates of
change with wrespect to the factor quantltles Therefore, if
the mecond-cwder partial derivativesiare to be negative, the
marginal productivities of each factor must decrease——if total
product iz allowed to vary, them 31 must increase at a decreasing
rate—as further incrementyethe sume factor are added. To
express the same thing in familiar economic terminology, increas-
ing inputs of nithex fbétor must be attended by decreasing
physical reiurns. Thm is by no means always the case. But
it may be avured\that the condition will normally be fulfilled
in the region t}m 1g relevant for the solution of our problem.

In order o\make the economic significanee of that solution
stand ouf Qbre clearly, let us return to the equations

O ., )
\; Pz = A"y
_ 6f (z,9)
Py ay

and divide the first by the second. We getb

ps _ ofzy)/ow

pe f@y)/oy
The student will have no difficulty in translating this equation
into words: The firoy must combine the factors in such a way that
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the ratio of their marginal productivities equals the ratio of their
prices. Our solution therefore vields a gonersl rule for the
rational behavior of producers. Alternatively, this rule may
he expressed as follows:

1 aftey) — Lofmy) 1

P 9z p, dy X
In words: in order to minimize total cost of producing a fized
amount of product, the firm raust so combine the [uctors (if itvbe
technologically possible 1o do so) that the lagt dollar's worbh of
any factor should produce the same increment of_physical
product as does the last dollar’s worth of uny othepdittor.

Finally, it should be noticed that \, which we, Hawe introdueed
as & mere calculatory device, has a definifc {,t‘h}ﬂ\lgh not always
the same) economic mesning. Tet us see\iwHal thai meaning
is in the particularly simple case of perfg}@\éompetiti on.

The quantity of product ¢ = Fle,) & in this argument he
treated as variable.  Denote its pride by 9. Since we are
confining ourselves to the case_ af ‘perfect competition, p is a
constant -(see pages 2 and 8} For total cost € we wuse the
same expression as above. (The net guin = which the firm is
striving to maximize is thitsh '

wespf ey — ep. — yp,

For the purpose i}r\}nand, we need not go beyond the first stop
of our proceduke) which consists in cuating to zero the first
partial del‘i}-‘dj’bi{fe of & with respeet to one of the factors, say, ©.
This yieldgy™

\Y a

\J g af(x,z
,\\" ——:p_"(_‘j_)-_p—_—ﬂ

« dz dx “

" Héhée., takiug aceount of the expression for Pz, derived above, we
\ immeadiately seo that,

oo =22 dfey)

SR el A e

and go
p=Xx

I the factor z is labor, we may express this resulf as follows:
Under conditions of porfoct competition the wage rate, the
“hourly earnings” of wage statistics, will in equilibrium be
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equal to the marginal productivity of {each type of) labor times
the price of the produet. This theorem is the basis of the
so-called “marginal-productivity™ theory of distribution.!

The Line of Regression. A problem o elementary stutisties
that involves determination of the minimum of a function of two
variables concerns the location of the “Hine of regression of y on 2™’
for & simple corvelation distribution involving two variates
¢ and y (a variate x being a particular observed value of the
variable ). Suppose that, given a list of such pairs of variates,
in considerable number (say = pairs), each z iz measured frpmy
the mean of a1l the original values of X and each y is meaguyed
from the mesn of all the original values of ¥. Hach ir}d{}jidua[
pair of varistes can then be plotted on a scatter diagre#inin which
the = and y are measured along perpendicular axegr{?s?? and OF,
with the origin O at the mean (Chart 146). Eagh spot on the
chart represcnts & pair of associated varisiggNf the spots seem
to cluster in an elongsted mass, as in Lhé thart, and seem to

'The Lagrange multiplicriz a cnnvenient’an;l"&;legant, hut not & necessary,
device. We ehall briefly indicate unothersprocedure.  We start again from
the cost function \

C = o+ vpy
and the production function L
' ONE =Sl
Bince i3 a congiant, ﬁ\xb f)roduntion lunetion really expresses a relation
between # and v alonel \Choosing, srhitrurily, the former for independent,
variable, wo can thp(éfdi'e (ordinarily) write
AN y = ()
,”\ W

\s j—i = ' (w)

and

2 8

Now,xe vifferentiate totally (sec p. 108) both the cost function and the
pttlhetion funclion with reepeet to our new and sole independent va.ria.blg z.

W total derivatives must, of course, be zero, in the case of the cost funqtmn
in order o fulfll the necessary condition for o minimum, in the casc of the
production function bewwuse 2 is a constant. This yields

g—g =P T Py ji =0
ds _ af(a:,y] t')f(:v_:;"f_) d?ir =0
dr = ax ay  de
#d 50, a5 before
. dy _ of(aw)/oz

e dz T afleyioy
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lie roughly along a straight line that is inclined tg the axes,
the chart gives provisional evidence of lincar assosiation, or
correlation, between the variables 2 and y.

Measurement of the degree of such correlation may he
approached by determining the Iines of regression (one line
showing the regression of ¥ on «, the other, of @ on y). The
line of regression of ¥ on z is defined as a straight Yne located
so that the sum of the squares of the vertical deviations of,{he

Y

O -Y
C;@!\éT’*iB.—-Col'relation scatter and analysis of line of regression.
."\“0 )
sey\e}&l’éputs from that line is & minimum. The zeneral cquation
of.a'straight line may be written
N®
Q~ y=me ot
where m is the slope and b is the y intcrcept.  Consider any spot
(JFg,y,') of the scatter diagram. Its vertical deviaiion is the
difference between ; and the ¥ of the line at the point vertically
belm.v (or above) the spot. Tor that point of the line, z is
manifestly z;; thus the y of that point of the line is found from
the general cquation of the line to be

y=my+0b
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Henee, the vertical deviation is

Ui — (mx; -+ b)
and its squara is

[y: — (may + B)FF

By definition of the line of regression, all these squared vertical
deviations, for all spots of the diagram, need to be added, and
the total, which we call E, nceds to be rendered a minimum, In
other words, those values of b and m must be found which will
locate the line so that E is a minimum. Now, L\

E =2y — (me; + W))° O

X
.

¥ 4 '~‘. .
where T means “the sum of terms like” and this sqﬁlma.tmn
extends to include all spots of the diagram, all gisen“pairs of
variates. Lxpunding the expression for I gives

E = Tyt + ZTmixl + Ih — Z2may — 226 + =3mbzx;
. 2
= 2yt L mPErt + nbt — 2mIzy; %’?‘Z)Zy" + 2mbZx;
sinee factors w2, 2m, 20, and 2mb can be taken “outside’ the
sign of swumation as these factorstare constant—do not vary
as we pass {rom spob to epot inbhe summation process—and
since £b? merely means adding tegether n iterms cqual to % As
& and y; are measured {rom bheir means,
)
Zx; i‘ﬁ and Zy; =0
Hence, F veduces tos
A</
B nb? + Iyt — 2mIay + m?Zxl
) NG _
I we mtr(ﬂ{@@:‘; throe new constants I, o, and oy, defined by
2 8

™ .0 l N 2 —_ ) 2
2P = Zaan, nol = Zaf, nee = ZY

tﬁ'é,“;&ﬁ"t form of £ becomes!
E = nb? + ne? — 2maP 4 m*no} (58)
Equation (58) gives B as & function of two “variables’’ b and
m; b and m ave variable in the sense that, as they change, F'hc
pusition of the line changes. As the problem is eoncerned with
th&tillg the ﬁn[‘,, this variation of b and m 18 the meany of cover-

"The student of elementary statistios will recognize og and oy 43 the
standard deviations of & and g, respectively, and P as the product moment,
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ing all possible locations, with a view to sclecting that location
for which £ iz minimum. All other magnitudes in (58) are
(‘onstants, so [ar as the position of the lne is cnncemed R,

, P, und 2 depend only upon the properties of ihe origingl
llSt. of variates, and the line can be located in varicus positions
without changing any of these constants.

The next task is {o find values of & and m whizh render E
minimum. Following the procedure indicated on pages 127 to
129:

8E . 9B Oy
EZR I o

aF I )

= —9n T — Db 2N

I 7l -+ 2mnc?; v '.?;Eo-g. }

Therefore \;\\\'
b=90 and MmN (59}
PNGE

vield a minimum for ¥ and fix the po}l‘rmn of the line of regres-
sion! of ¥ on . Onece b and m hswe thus been delermined to
logate the particular line for Whmh £ is minimum, they can be
substituted in ~N

to mc,ld the equa’rlon ok the line of regresgion. In that equation,
they (b and m) ale\«\on%t&nt the variables there arc 2 sad .

L This analysig," m its first stages, i3 adapted from Yule and Kendalls
An Tntroductig® 8 the Theory of Statisties, pp. 209-210, Charles Griflin &
C(Jl‘flpan}’{ld. Tondon, 1087,



CHAPTER VI
PIFFERENTIAL EQUATIONS

Thus far we have been dealing with a supposedly given func-
tional relation, connecting a dependent variahble such as ¢ with
one or more independent veriables such as ¢, Starting out \\‘1}'.}\1‘\
such a given functional relation as AN

6= 0.2+ 15+ 7

we have studied by graphic and other means, and subgequently
by the powerful analytical deviee of the derivatiNg) significant
aspects of the relation between ¢ and ¢. 1 \

Wenow turn to what is In a sense the invcys@foblem: starting
out with given knowledge as to the doriwative, in its relation to
gor ¢ or both, we seek knowledge concerfing the relation between
¢and ¢. "This inverse process, whichalavolves the concept of the
differential equation and its an a]ygi,ig,:’.i&ﬁ]] Iz found to widen much
further our capucity to use agalytical machinery for solving
economic problems. In many eases the differentisl equation
I8 not only an exceedingly ‘powerful tool, but alse an indis-
pensable tool, for subjécting known or assumed facts to symbolie
treatment, and therdby bringing to bear upon them a mathe-
matical procoss fdnvestigation.

The Differen('ial Equation. An equation that states a func-
tional relatioﬁ'y explicit or implicit, between a derivative (or
several der¥atives) and the dependent or independent variable
or both\¥ called & “differential equation.” In contrast, an
equalion botween the variables alone, and not invelving any
de{'i‘}éti.ves} may be called an “ordinary equation.”” The
differential equation iz thus mercly an equation that involves,
In one or morc of its terms, a derivative (or derivat-ives)-_

An examplo of a simple differential equation giving the.
derivative explicitly in terms of the independent variable is
afforded by any one of the derivative formulas studied above,
for instance '

de _ 0.4g + 1.5
dg
137
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This is a simple case in which the derivative iz stated equal to
an algebraic expression, an expression made up of a sum of
terms each of which iz a constant multiplied by a positive
integral power of the variable, in the independert variable,
Tts more general form would be

de . .
Qg = @g” a4t deg T A (60}
in which # is a positive integer and aq, s, @a, . . . .- ave fiked

{or known) constanta. As will appear presently, this ;mzi\very
elementary type of differential equation, which can 1&1(111} be
subjected to symbolic treatment, “\

An example of a more complicated explicit em’mlton is

..,\
de G
-3&=ac+bq+?ﬁ (61
N

Here both ¢ and g appear in the right Pxpre&qmn snd Lhe analysis
of such differential cguations m@ountem ceriain techmieal
obstacles, O

Ags an illustration of an 1mphelt type of differentisl equation,
we may take 4

a'r)

o’q i g {62)
,‘

Sometimes, as_with an implicit equation of the ordinary sort,

an implicit différential equation can be “solved” expiicitly for

the derivapivé/ thus vielding onc of the simpler types mentioned

above. /> “the present ingtance, Equation (62) can be solved

or T to viel
f dq{!'?z d
Q) de _ —b+ VB + 40 + &5

ot dg %a

The right expression here not only differs from the simple
algebraic form of Equation (80), but it has the fundamentally
more complicated aspeet of Fquation (61): it involves both the
independent variable ¢ and the dependent variable c.  Morcover,

' Here the solution is written down by use of the formula for the roots of 2
quadratic equation. The student will reea)] from his ol gehra that the
formula glvm; the same rosult as the more laborious rethod of “eomploting
the squares.”
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it is not sirgle-valued; it is really two equat;ions one for each
sign of the radical.

For the time being, we ghall ignore all differential cuations
of the more somplicated sort and fix attention upon thosc of the
type represented by Equation (60}, an explicit differential
equation, in which the derivative is stated equal to an algebraic
expression i the independent variable. Fortunately, various
important problems In economics lead to differential equations
of just sueh simple type.

Integration, 'The process of finding the ordinary functional
relation, not involving the derivative, between ¢ and g, w henythe
d]fferentlal equation is given, is called integration, or scn;nctlmec;
“finding the solution” or ‘‘the integral’” of the d.lfferentlal
equation. Hor the exceedingly simple type of\d1ffcrontlal
cquation presented in Equation (60), this proceés is direct and
obvious.

Taking, as s specific casc Uf this type, th{@lﬁerentlal equation

(‘j—; = 0.4¢ +.,1‘5 (63)
its solution is found mercly by « dlscm ering the funefion ¢, of g,
which when {nffelentlated tos yield dc;’dq oives exactly the
expression on Lho right sige of (63). To discover such a fune-
tion ¢, we use the rules of differentiation inversely: we know that
the dvu\ rativa of (. EQ\\\?@ 0,4q, that the derivative of 1.5¢ i3 1.5,
and that the deriydtive of any constant k is 0. Hence
NS

,\" e=0.2¢*+ 1.5g + % (64)
Is elearly B\Eunctmn for which de/dg is 0.d¢ + 1.5. Therefore,
Lquatlcm ?T‘H) is the desired solution of Equation (63): Equation
(64) gives the ordinary relation belween ¢ and ¢ to which the
Qﬁervnhal equation, given in (63}, corresponds.

Two ncts should be noted about the process of integration used
above, First, we integrated cach term in the right member of
183) separately: 0.4¢ vielded 0.2¢? as its integral, 1.5 yielded 1.5¢
a8 ifs intogral. This treatment of the right side of (63) term
by term merely amounts to the inverse application of that rule
of differentiation (rule 3, page 92) which states that the deriva-
five of the sum of two functions is the sum of the derivatives
of the separate functions. The corresponding rule of infegration
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would read: The integral of the sum of two {unctions is the sum
of the integrals of two separate functions. After faidng account
of this rule, each term of the right side of {63) can then be inte-
grated by an inverse application of the appropriate rule of
differentiation. IHscovery of which rule is thus appropriate is
partly a matter of our familiarity with tho rules and our skill
in recognizing whieh rule applies in a particular casc; but, as will
appear presently, certain technical schemes are of great assistance
in those cases in which s search for the appropriate rule might
develop inte a mere puzzle or process of cut and try, ()

The second fact to note, and this is of great Sigiijﬁ(:a.mte, 15
that we madc allowance in the solution for an addigive constant k;
this was done on the ground that if there Were.aé'ly additive con-
stant in ¢ its derivative would be zero an(l"*«y\)ul(.l thug be lost
from view in (63). This i3 a very geneshldpoint: the solution
of every differential cquation, no maﬁer what other ferms
(functions of ¢) it Is found to ceutain, includes an avbitrary
constant. This principle appliog ot only te the simple type
of differential equation in (60},but also to the more complicated
explicit types.! The reason{0r including the constant in the
solution is that, so far aswye'know, it might be prosent without
altering (since its dexivative is zero) the given differential
equation, Q

Such a consta t:,:w]njch we must automatically introduce in the
golution of a differential equation, is ealled a consiant of integra-
tion, or sombbimes an abilrary constant. A solution that
contains sth & constant, as is the case with Equation {64},
1s (:allo{l;}L general solution of the differential equation. Mani-
festlwMthough all the other constants in the solution may be in
namerical form, we do not know the numerical value of the con-

ostant of integration. It may have any numerical value (or

Nt g

“depend in any specified manner upon other and known constants).

without in any way altering the given differential equation;
whatever ifs numerical value, the differentisl equation remains
the same. But different numerical values of the congtant——or
different specifications of that constant in terms of other (pre-
sumably known) constants of the problem, whether numerical

) 1 Sll::-h a eonstant enters also even when the differential equa.tio'h is of the
implicit type, but the manner of its appearance may be more intricate
than by mere addition.
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or otherwize—yield different expressions for the solution, each
such expression dilfering from the others by having a different
value of the inlegration constant. Any one specific value of the
constabt picks out one specific solution from this whole family
of different general solutions; such a specific solution, depending
upon a staied value of the constant of integration, is called a
particular solufion of the differential equation,

Tu practicsl applications of the method of differential equa-
tions, e.g., in the field of economics, we customarily desire s
particular solution rather than a general solution. - The process of )
integration, however, yiclds oaly the general solution. To pass ©
from this genersl solution to the desired particular Solut'igl:l,"t-he
appropriste value of the constant of integration must/hs deter-
mined. Such determination ordinarily rests 11p011;\a’}11 tritial
condition—some known pair of associated values of ¢and ¢ which,
when substituted in the general solution, enc@lkie,us to calenlate
the constant.! ' L&

Thus, in the problem to which Equation f63) relates, supposc
wo knew in advance that ¢ is 10.8 when o8 2; this pair of values
is the initial condition. Then, by vt'},leﬁ general solution (64},

10.8 = 0.85°3 + &
and kis 7. Accordingly, the. particular solution is
c =M2¢" + 1.5¢ + 7

An equation, like (04); “that contains a single arbitrary con-
stant is sometimes said to posscss one degree of freedom. More
somplicated diffévential cquations than (63) or (60} can leeId
through the pfubéss of integration general sclutions in which
several conganfs of integration appear. If there are m such
Gnnst-ants,s'%u general solufion is said to possess m degrees of
freedom(™

I&i"ﬁing now to the more geperal differential equation of the
Sh"lpic algebraic type '

de o
_ = n— —— PR - )0
dg“a.lgn+f12q D g™ + Gug + Gy (60)

' The term initial condition is perhaps unfortunate; for there 1s !
Recessarily “initial” ahout it, except in the sense that the condition Is kmown
_‘l'n.itian},:, before and independent of the integration process. But t_he
nitial eondition need not apply 1o any beginning point, e.q., t]?e first point
of the curve relating ¢ and g on a chart; it can apply to any point {sce foot-
hote 1, p. 9.

there iz nothing
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where the various a;, ¢ ranging from 1 to » 4 1, are known con-
stants, fixed numerically, and » is a known positive integer, we
can at onee write down its general solution as
I .
qn—l ,_I_. R _|_ E i
+ @y + & (65)

_ M 13 %2 fs
c—n+1g“ -l-%q +ﬂ'—]_

where & is again the constant of integration. Aas hefore, the
process of integration congists in treating each term oR60)
separately, using the appropriate rule of differentia‘r.-i.un\gmainly
the rule for getting dy/de when ¥ is o power of zyhaciiward,
and thus writing down by inspection correspor;ld"i‘n\g terms of
{63). e\

Once more, if a known pair of values of ¢ a-f\d" i is given as an
initial eondition, substitution of those vulygs’of ¢ and ¢ in (65)
determines k und thus yiclds the desireg{\p}trticular solition.

We have assumed, in Equation (60 (Bt » is o posilive integer
and, accordingly, that all terms sh the right side tnelude only
positive inlegral powers of g.  Iitect integration, using the same
differentiation rules inversel}f;:i?s nevertheless possible for any
powers of g, positive or peééiive, integral or fractional, except
the power minus one. Thils, if

de

S ; B
dg (B b g

NG = Pag + Bobg*t — 39 + k
But for t-}%e ﬁi"s:o-negative power of g, a different rule of differentis-
tion mugiibe applied backward—the rule for the derivative of &
loga{ﬁiﬁfﬁ. Thus, if
A\ dC

&« —

c =
Using a principle of logarithms, this result can be written in the
form
¢ =log g+ £k

and, if we replace k& by a new constant of integration % related to
k by & = log k, this becomes

¢ = log hg-
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Separation of Variables. If both # and y (for which ¢ and ¢, in
the foregoing illusfrations, may. be regarded as a special case)
pceur in the expression to which dy/dz is set equal in an explicit
differential eguation, as in

j—; = ac+ by + k 61)

where £ is now a given constant, as are e and b, and not here a
vonstant of integration, the process of integration may prove, £\
difficult or impossible.  Sometimes, however, the two variables
appear in such eases in a form that admits of easy integrationdyw’
separating the variables. TFor example, if O

P

2 dy _ 4 o \ ™
2= = (1 — x)y > (66)
the step preparatory to integration “separates”'t}fie variables,
by shifting ali the factors containing y to thf: {ej;t and those con-

taining  to ihe right

7

1dy 1 BO
=2 = T BN 7
yidr 1t A (67)
This is no fonger a differential f}q{];étion in explicit form, but it
can be made so by introducing 4 hew variable 2 defined so that
| 2_ 1y -
.i"‘ﬁﬁ T yids
This mereiy implies tﬁ} 2 is the following function of y:
oY 1
AN 2= —-— —
N Y
because a pﬁiiat.ion of the rules of differentiation (rule 7, page
93) ShQ’w N that dz/dr would then in fact be (1/y%) dy/dz.
Equg&tgﬁ (67) can now be written explicitly
Q~ dz_ 1 _1
dr 2 =%
which integrates to

—logz +k

2= —

R Nl

' No constant, of integration is introduced here, as it would m(?I‘BIY amount
0 having two constants in (68), one on the left and one on the‘mght. These
o would then naturally be combined into one—only a single constant
teally enters.
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) and, by using the above expression of 2 in terms of y, this is

1 I _
——g——%——lugm—f-k (68)
or '
1 1
§—§+10g:},—k

As a matter of fact, % is an unknown constant in the genazal
solution; there is no sense in attaching a minus sign to it, wnee
the sign might be regarded as included in the constant. ,O¥é can
think of a new constant &', cqual to —%, and then hafe™ ~

\
7%

1 1 . N
—=—dlogz—+ & e \ I (69)
¥y oo ¢
as the general solution. In general, as heraand in the log hg? case
immediately above, we arrange to int{qﬁuce the constant of
integration in whatever form proves.;{@st convenicat.

In practice, when separation ofsthe variables has thrown the
differential equation into such adorm as

1ap71 1

TR
ve do not customé-li *buke the actual step of introducing the
mew variable z (sek bage 155). Instead, we merely note, by
the rules of dﬂﬁe}ét-iation, applied backward, that the intogral

of the left sideus —1/y; then we sct down at ance
A/
7. _l_ 1
A& ” e logz + k
’\\w ‘
Asa further example of this procedure, consider the differential
retmation
"\“’ a— )xdy__ -

Yz =y log &

Separating the variables,

1—ydy |
7 dr 1 log x
which is
ldy _ldy d(log z)

yide ydr R
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Integrating,
1
—;4%y=%®m¥+k

In this case the simplicity of the intogration results from the good
fortune that, on the right side, 1/x is the derivative of log z. In
aueh cireumsiances—when an expression is itself a derivative of a
funetion, or {as herc) consists of two parts one of which is the
derivative of the other—the expression is called an exact derivative. .

Elasticity of Demand. Suppose that the law of demand for & \
particular commodity in a particular market iz specified in the,’
following terms: Flasticity of demand is constant for all arGynts
of the commaodity. This is an iHustration of a verbal hta.tement
that vields, when thrown into symbolic form, ag "dllchI‘CIltlal
equation, rather than an ordinary funetional 1ela‘b1011 between
the fundamental variables (price p and quantiby gj

We know that elasticity of demand is g,we.Q\byl

Ll 3O
gdp QO
Hence, for constant elasticity O )
e, (70)

A\¢ 9P
where o is 4 supposedi®) \known constant. Integration of (70)
by separating the vaﬁ}bleh

A\ ldg _
_ A Tgdp b
glves 9. N
2\ :
‘§~.~’ —logg=ualogpt+ & .

or, if wdveplace k by — log &, involving the new arbitrary constant
}1&‘1».1.}11 rearrange the equation

' alogp +logg=logh

L1 the definition of elasticity has been given, as iz sometimes done 1n
elernentary economics, in terms of small changes in price and quantit}n—Fhe
elasticity is the ratio of o small relative decrease in quantity 001'1'09-130“(_11“3
to & small relative inerease in price—the derivative form can be ob.ta}lled
by using the limit idea, .., letting Ap approach 0 and finding the limit of

ag + apt bepdq
¢ P gdp
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giving, by principles of logarithms, the general solution:

' pg=h (71)
Equation (71} is then the functional relation, reprasenting the
demand function, between p and ¢. Tt is in implicit fzrm but can
be solved explicitly for p or ¢

: _(ﬁ_)”“ o0 g= b
oe=d €=

Herc is an examplo of the standatrd procedure by which\t-he
differential-equuti o wiethod

ol can bhe appliedswd Yarious
economie, and Q}-ﬂ{:-.r seientifie,

problems. Ahiskituation and

hete procedurefate, in cutline: (1)
the kaown verba! statement

of the problem does not lead
taalordinary functional rela-
.,{ie)n, In symbolie terms, be-
. Miween the variabiss: (2) it
leads rather to a differential
equation, which can be writ-
ten down by a direct transla-
tion of the verhal statement
: into an equation involving one
0 L\  or both variables and the
Craxr 47.—Selgcted demand curves of  derivative; (3) this differentisl -
Ryt elusticity. equation is then infegrated, if

this is pgssible from our knowledge of the rules of integration; (4)
th<‘\a§$itrary constant is evaluated from the initial condition, if

amynts specifiéd in the verbal statement of the problem.

\Mor the special case when « is 14, liquation (71) takes the

-()

and the demand curves, for selected values of 4, appear in Chart
47. If a, the clastlcity, is unity, Equation (71) becomes
pg="h

*If the verbal siatement also informs us a8 fo the initial condition, some

known pair of values for ¢ and 4 h can be determined specifically, to vield o
partieular golution. : '

1

1
sofF )
]
1

Yexplicit form
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which means that the total value, pg, of the commodity sold in
the market 1z fixed, whatever the quantity (or price). This case
of unit elasticiiy is ezpeelally significant for certain discussions in
economic theory,  The corre-
sponding curves are equila- P
teral hyperbolas! and appear -
for gelected wvalues of & in 3
Chart 48, .

Compound interest. In
practical life, compound inter-
est i* usually rveckoned at -
stated intervals: a fixed por- L
centage, the ‘rate of interest,”
is applied to the asccymulated
amount of the fund as it 9
oxisted ut the heginning of the -
interval {say of 6 months) and L
added thereto at the end of
the interval, to vield the new
value of the accumulated
amount. For ccrtain theo-
refical purposes, however, the
compounding may helpful
be regarded as taking plake :
eontinuouslv— {ho mu%m may be regurded #s an increment of
time that app;:oa-chusjzero ag a limit.

On this baas, :tlie ‘instantaneous rate of change, with time as
the independenPwariable, of the accumulated und is the amount
of the fun h?‘ditiplied by the tate of interest. Let { be fime,
measured {{rom any chosen zero such as the moment when
accumplation hegan, snd let F be the accumulated amount of
the'find at time £ Then, if the instantanecus rate of interest 14
thévfonstant, », the verbal conditions of the problem imply the
following difforential equation:?

10~

Sl 5 il
CHART 48.—8elected demsnd curves of
unit elasticity.

' Oaly the hranch in the positive, ¢ and p both positive, quadra.n.t has
Eoonomic sipnificunce. A similar curve, in the full graphic representation of
He mathematical formula, appears diagonally below and to the loft, where
both ¢ and ¥ are negative. .
_ *For clarifying this point, consider a small interval Af of time ¢ as the
mterval of compounding. Tf # is the rate of interest per year, r At ‘.‘rlu.bﬁ
the bereentage to be applied to the fund F, as it existed at the beginmng
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o5 = F (72)

By separation of the variables
i
Fodi
logF =vl+k
a.nﬂ, if & is replaced by log A,
log# —log h =+l N
F oA
log = = 7t NS ¢
ki 4\
Using now the definition of l0garithm—thcj.fo;g;Ei.rithm to the
base e (and the base ¢ is implied here, see }mljie‘S, puage 94) of any
number is the exponent of that power of\enwhich equals the given

number—this leads to? \\
fg_ ot oOF = her (73]

The eompound-interest ifﬁr:{ction, Equation (73}, is of high
importance in various théoretical problems, in economies and
other fields. Althoughlit is seklom or never used in reallife
compounding of interest, it enters in numercus ways in finan-
cial and other gévnomic problems in which inicrest can be
treated, for tlk‘@ﬂ'étical or practical purposes, as being reckoned
inst;ant&nqpu:sly.

To render the formula useful in a given practical case, the rate
of in tgr\i:sﬁ 7 would necd be known and the constant of integration
hvould nced be determined. Such determination might, for
zeﬁnple, flow from a knowledge of the original principal amount
'set at Interest.  This would imply that, for ¢ equal zero, F is P

> Then substitution in (73) would show that A is 2. The opposite

case arlses when the accumulated smount 4 at some foture date,
h years ahead, is known and the “present value” of the fund,

of the inlerval, to get the interest AF to he added at the cnd of the interval.
Thus A‘F = Fr Af, and AF /At = Fr, which in the limit gives (72).

. ! Th}s conversion of an cquation mvolvin g the logarithm funetion to 07€
involving the exponential funelion, the funetion in which ¢ jx raised to @
tvariable power, i3 & deviee of froquent ugefulness, A logartthimic nquation
in explicit, form can always be converted to an exponential equation, 0
view versa.
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the amount at present that would accumulate te 4 in &) years,
is desired.  Yor this ease, substituling the initial condition gives
. |

A = he and h = Ade
and (73) becomoes
F = Ae gt (74)

Under the assmunphions as described, the “present” is time zere,
and substitution of £ as zero in (74} gives Fy as the present value
of the amount A, £, yea.rs n the future!
= Aem .\\ ’
A\
A related pr oblem in which the factor corresponding ¥ 1;0 the
“pate of interest’’ is negative, appeats in onc type of an}il\»ms of
depreciation. Suppose that the book value of a (*&le instri-
ment after time ¢ of its use has elapsed is F andsfhaw the Instan-
tancous time rate of depreciation in that \arlue 1s that value
multiplied e some constant —r (where r i3 ofitive). Deprevia-
tion being a negative change in value, Thl‘i instantaneous rate is
essentinlly negative (and, if the conf-stzmt r were used without
minug sign aitached, r would be m\gat'rvo) Hence
JF Ay
»Lj‘f, = —rF

NS

and integration gives t-h\s:é;}neral solution

Ko F = he

S

I B is the \'a]ue\at thc beginning of use, i.c., when ¢ is zero,
the constant e;Nntogjmtlon A is evaluated by

\\ B=he=h

hfi{“:‘-ﬁ'\ﬁhe particular solution is®
) Y N/
\ ’ F = Be™

!'This regult could, of course, bave heen obtained indirectly by treating
the presont value ¥, as “principal” P and 4 a5 the accumulated value at
bme 4,

* This is » treaiment of depreciation that has sortain theoretieal advan-
tages, but is not generally used in practice. The commonest method of

caleuluting depreciatinn in practice is the so-ealled straight-line method.
It dedusts & fixed amount from value each year, Tather than a_ﬁxed per-
“enfage: if, corresponds to simple inferest rather {han compound jnterest.
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An interesting point here is that, if the useful Jife of the
machine is alse known, as ¢ equal #;, and the zerap value J at the
end of use is also known, r can be determined from this eondition.’

+ Thus
J = Bem
giving
J_ r J — - _ g B~ logJ
=™ logJ —logB= —rty, and r = N

Total Utility. The measurement, and even the pr(‘,{tiﬁ"e:&eﬁni-
tion, of utility does not admit of entirely satisfactors Bratment
(see page 67). We may, however, make certsin, v.{-,zg;'i‘_mr narrow
assumptions upon which a helpful analysis c;al;‘xt be” developed.
Suppose that an individual already has a geﬁkﬁin slock ¢ of 2
consumable commodity A and is considttite acquisition of a
small additional amount Ag; suppose fupther that the commeodity
is available in a market in exchangd for money. For present
purposes, all that necd be assumed’ ahout the utility of the
commodity to the individual i ¢thut the average inevesse in his
utility, per unit of the additianal amount Ag, is sirisily propor-
sional to the price he is, }i-“iiﬁ.ng to pay.? The corresponding
symbolic equation is, wheve # represents utility, p 1= price, and

¢ Is gquantity L
aw k k constant

X \\ Ag = kp, constan

If Ag &]Jpl:()\éiéhés zero as-a limif, this gives the differential
tion, ()
equa 1{)1’.:Lt\" "
."\". _ -
\’\\‘. dq F‘Cp

'%ﬁ'&’ if the relation between p and ¢ is known from this demand

\curve as

W

P = flg)

£ This is not, however, determination of & “congtant of integration,”
only one such conatant A enters in integration.

® This assumption of strict proportionality is the essential “narrowing”
assumption: it iy the assumption thad may place the present analysis seri-
ously out of touch with reality. It really implics the assumption that the
utility of money, which may be rogarded s g gencralized utility of “other
goods,” to the individual is not affected by the amount of moncy spebt
in exchange for commodity A,
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this becomes
du
Y =F
dg ofq)
Tntegration of this differential equation, assuming f is a function
that can be intsgrated, vields

u = kg(g} + A

where ¢ I8 a new function of ¢, a function whose derivative is f;
and £ is the constant of integration.  Unless we can assume sonfs,
such initiul mondition as that u is zero when g is zero, h catnob
be determined. However, although the entire operatign™pre-
supposcs the individual’s demand function f is known, ahd ‘makes
the somewhat doubtful assumption that % is t}:Qljr'coﬁstant
(not dependent upon g), this solution of the differential cquation
assists our understanding of one of the muost glusive economic
concepte.  The individual’s marginal u .iTi;iB’f curve, although
expressible i terms of his demand cug¥e) is not identical with
it. Omee (he marginal utility is cxpressed in terms of the demand
function, iniegration of the diffexdntial equation leads to an
expression giving the form of thel total utility function,

The Differential Notations\ Discussion and analysis of a
differential couation, suchisfs

™y _ 75
N s (75)
can in some res’g);éc'ts be facilitated if the equation is writ.ten in
the form N

O\ )
'\\“ oy = flx) dx {76)

2 &

anduthis also is called a differential cquation. This amounts,
fomnally at least, to clearing of fractions; dy/dz has been treated
E" if it woere a fraction. We emphasized above (page 88)
that dy/dz is not a fraction, but a compound symbol with a
meaning that implicitly denies that it is a fraction. Neverthe-
less, the great convenience of form (76) for cerfall PUrpOSEs
warrants its use; but, although we treat dy/dz as if. it were a
fraction in arriving at (76), the student should not forget tk.lat
the differential eoquation strictly exprosses & funetional rclai_:-lon
between the derivative, rather than its numcrator and denomina-

Q"
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tor, and the variables. Any operations that we apply to (76)
ean have validity only if they would also be valid, by implication
at least, for the striet form (75) in which the derivative appedrs
in its true guise.

Such a symbol as da or dy is called a dif, erential; more generally,
the expression

fla) dx

may also be called a differential or, better, a differential exphas-
sion. The analogy between dz and Az will suggest itsdfyio the
reader, and they are treated as identical. For example’ if we
had a known relation, based upon or derivable from™the verhal
statement of a particular preblem, between thé\increment Ay
in the dependent, variable and the correspondihg increment Az
in the independent variabie in the form \/

Ay = f(x) gt~
] N
we should at once write, if f(x) is thovderivative of 3 with respect
to x, '

Ty S Wz) da

ag the diffcrential equation® Here Ay is a function of z and Az,
and likewise dy is a fudcbion of z and dx. Although this passage,
from a strictly c-orye"cz‘cqua,tion relating finste inerements Ay and
Az, to the diffevential equation is accomplished formally by a
mere substitutfon of dz for Az and dy for Ay, the entire limit
analysis is Jaken for granted. What we really have done, by
implicatiohy” consists in (1) dividing Ay by Ax, (2) taking the
limi%j\ﬁz approaches zero, and then (3) treating the resulting
ditferéntial equalion as if dy/dx could be split up into numerator
afid "denominator like any ordinary fraction. We are in fact

(Jefining dy, the differential of ¥, ag the derivative of  with respect

to z multiplied by dx.
If the original exact relation between the in crements Ay and Az
had taken the form

Ay = fi(z) Az + fo(z) Az? {77}

we might have written

dy = filx) de {78)
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as the final dificrential equation. Again, this implies an applica-
tion of the melhod of limits. Ilad we, using (77), divided Ay
by Az, and then allowed Az to approach zero as a limit, we should
have got direeily :

Y - 1@

us the differentinl equation. © This, by the definition of dy, could
have been thrown into the form (78).

The Concept of the Integral. At the beginning of this chaptefy,
integration has been introduced as the operation that is inve:sé £
differentinticn {pages 137 and 138) or as “‘the process of ﬁﬁtfing
the ordinary functional relation between the dcpqq&fﬁfh and
the independent variable” (page 133), when thzf:'“{es‘dvative is
given. Also, it has been shown why integratieh leads to the
insertion of an arbitrary constant in the rexfit. Having in
the preceding section acquainted ourselve “with the differential
notation, we are now in a position to {nffoduce the usual gym-
bolism of the integral ealculus. QO

Let & function £(2) be given, I ‘there exists a function F{z)
that has f(z) for derivative, thensd{%) is called the integral of f(z),
and iho opersilon of finding\F(x) from f(z) is symbolically
expresged by the sign | ;F"hus

ne.
\Dﬁ(&) dr = Fiz) + ¢
in which the inclusien of dz as a factor on the left side should be
noted. By agdimption.
I.}\le"‘tif\-’o formulas mean exactly the same thing. It follows that
vV -
d[[fiz) dz] _

This fact may be expressed by saying that the integral sign and -
the differential sign cancel each other, just a3 do square root and
fecond power, (v/z)? = «.

To every formula of the differential caleulus, thercfore, cor-
responds a formula of the integral calculus. Ifor cxample
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xﬂ|l
fxdx—-n_i_l—f—c, n+1=0
dz

—=logz+e¢
x gz +

fsinxda:= —cosxJ¢

/cosxd$=ﬁinx—]—c I\

If in the integral KoY
\\ v

farde =P o (O
we substitute for = first a constant b and thense ccm:?tsmt e and
subtract, the arbitrary constant ¢ disappc:@;ﬁfa.h’d we have

F(b) - Fla) !

This difference is called the definite 4 eg&: al taken betwesn a and b;

by way of distinction ff(a:} de is then}called the tndefinite infegrol.
Wo write RO

[ @ dw:[ﬁ('r)}i’ — P(b) — F(a)

F v A~
or example Q

=2 ,:\"’} w2
f sin z da =‘<\\$cosx) = w-(:r_)57—2r— (—cos0)=041=1
0 \ 0

Exact Dﬁéi”entml Equations. Among the advantages of the
dlff(.,l‘(_,nﬁkal' notation is its facilitation of the integration of differ-
&i “gruations in numerous cases: it enables us to proeeed
Ut constant thought as to which is the independent variable.
Fm exarmple, consider the differential equation
<\.., 21— < (1 4y
/ : dx Y

which, in differential form, ig
21 —yydy = (1 + 2)ytde

By separating the variables, this is

gy -

1
" = ; dz + %d:c (79)
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The left gide of this differential equation can now be integrated,
formally at least, without regard to the fact that z is the inde-
pendent varisble.  The integral of the left side is

_t
2 "y

because the rules of differentiation show that the derivative of
this expression, with respeet lo y, 18

i_1 N
ooy ")
'S N
The integral of the right side is AN
| . E
5 og T \:"\.\ /
and the solution of the entire dilferential eg&@ﬁioﬂ, including %
a3 u constant of integration, is \\
1,1 1,V
= L= = 3 9 k
5 + " x:l— log = +-

o
X
C XY

Any differential expression 8"
Q ) dy
in which 7(y) is the défiystive—with respeot to y, regardless of

whother  is or is aobthe independent variable of the problem,

of some other fup.p;fil)n of y such as fi{y)—i.e., In which
\<

\) df1(y)
iInN” p) = S
N\ £ dy .
B "-'311?’%?1{ exact differential. The corresponding integrsal is
f 1@")\*:’;‘“ s, in the illustration (left side) of Equation (79},
L 3} .
~O L
A ) == g
and the corresponding integral is
1 1
flyy = — 5y + v

Likewise, for the right side of (79)

1 1
gz) = 5+
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and the integral is

1
gilz) = — po + log =

Whenever a differential equation can be thrown info the form
involving only exact differentials, this procedurc in integration
becomes possible. A more complicated type of exact differential
involves differentials of both the independent variubie and_the
dependent variable, both dy and dz.  Consider, for examplé, the
differential expression A
€ N\

Qutyt do -+ aty dy O
which can be written in the form A
w%y 20y do + 22 dy) w,'\g‘ (80)
If we regard ¥ as constant, the first tcerJ

22y 2y dgg\ ¥
has the integral P v/

@y
e

~

v~’,
e

since 2zy ia the derivative 0{ x'_; with respeet to & with % vegarded
a8 constant, Con%ldf{mg z constant, the second term

2yx? dy
has the in’oegra}l\
@)
N } / - 2

7 \ ,,a
These"two integrals are identical; of course, this is a mere for-
lupal “consequence of the pecullm' form chosen for the expression

(:80 Another, and more informing, way of looking at (80) Is

:.::y(Q:cy + z* )d:r
and, as 2zy 4 22(dy/dz) is precisely the derivative of 2y, this s
manifestly an exact differential which might be written
zhy d(2%y)
and would therefore have the integral

@y)®
p
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As noted zbove, (80) was purposely selected and arranged so
that it would be an exact differential. Had it read

2e%tdr 4+ 2ty dy

it would not have been an exact differential, and its integral
could not thoerefore be found by the foregoing simple process.
In setual practice, however, certain expressions do appear which,
by the exercize of some ingenuity developed through familiarity
with the rules of differentiation, can be thrown into the form of
exact differentinle.  Where this does prove feasible, the method )
of exact differentials is a powerful aid in integration, O
A useful lest answers definitely the question whether adiffer-
enfial inveolving both dx and dy is exact. If the diffgr?ﬁtiai is

filz,y) dz + folz,y) dy O

where fy and £, are functions of = or-y or bothﬁtlvie differential is
exact if? \ Nt

.

afy a_f2 :".”

E&!} - ax):'“ Y
Thus, for (80} o
fi = 2:1:3’9’2,:':03 f. =zt

afl A P 6‘f2
—_— o _— == 4 3
o~ im:{“y, ap = Y

Consider, for example;\ﬂig.dﬂferential equation
Sz + Say? dy = Tdw + 2dy
which can be aiﬁ;i‘ﬁ:(.en
\NW

&% — T)do + Gayt — Ddy =0
Here o

m\\::\':" ..rl = x5y -_— 7’ fQ = 31:9’2 - 2
\ 4 . a_fl — i a_ﬁ = .Syg
ay ! dz

hgnee the diffcrential equation is not exact, Moreover, the left
side of the given equation, considered alone, is similarly shown
ot exact,

" This assumes that fy and f» meet certain requisites, concerning the
Slatenne of their respeetive derivatives. This point is elaborated in trea-
tizes on diﬂ"erentla.l equa,ﬁ()l‘fls_ )
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Integrating Factor. Sometimes the differentials of a differen-
tial equation can be rendered exact by multiplying the entire
equation by a factor, involving « or ¥ or both, whigh ix called an
integrating factor. Given the differential equation

20 der + zy dy = 3dx (81)
the left side can be made an exact differcntial if the entire
cquation is multiplied by #* to yield N\

2r¥2dx + 2y dy = 3xt dy O\
N\

and the essential point is that the right side also remars an exact
differential. The left side is now the same as (RQNMgr:ation (81)
was purposely chosen, ag an illustration, to lead &0 this outcome),
and integration gives \; ‘

2y,42 A \J
(xTy)' = Yard >
Had the right side of (81) containdd’ly instead of dz, theintegrat-
ing factor would have spoilczgl.’the right side a8 an exact differ-
ential, and integration woeuld have been halted. 1'he student
will engquire whether am:'.'method, other than mere iuspection
or eut and try, exists(for finding an integrating facior. If the
differential equ&t-ipﬁ'b&n be integrated, the integrating factor can
be found; but it"eannot always be found in advance. Altheugh,
for a limited(tange of cascs, a definite process exists for dis-
covering thie ﬁltegmt-ing factor ag a means to integration, no
entirelygeneral rule exists; to a large degree the student must rely
on ti\s)"sicill in identifying a factor that, in the light of known
rulgsof differentiation, will render a differential exact.’
~\Higher Order Differential Equations. The differential equa-
N\ _bons that have been examined and integrated above are of a
N/ peculiarly simple type: they are ordinary differential equations
of the first order and first degree. An ordinary differentisl

' Further discussion of integrating factors will be found in standard works
on differential equations. The student is referred to the same sources for
information about special devices which have been invented for iniegrating
rumerous particular types of differential equations which arise frequently in
applied mathematies. Fortunately, many differential cquaiions arising in
clementary economics are of the sort diseussed in the text above, for which
integrals can readily be found, .
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equation arises only in a case involving two variables, one
independent and the other dependent.

The ordinary differential eguations so fur discussed have
nvolved oniy first derivatives and are called differentisl equations
of the firsi crder. A dillerential equation can arise, however,
which invalyes derivatives of any order, e.g.,

3 2. ]
f—!f; ~ 80 0¥ 4 502 2 =
This is an egoation of the third order; in general, the order oflah
differential cguation is the same as that of the highest or(féi-ed
derivative that is included. The integration of differential
equations of ovder higher than the first may be obstt;llctéd by
gerious or even insuperable obstacles, and only,a}p\a-rticularly
simple case can be taken up here, viz., the cagolal linear higher
order differeniial equations with constant cogfigients or differential

74

equations of the general form AN
dny dn—ly ] dﬂ‘—zy Y \ w
o 75 + o1 dz1 + 62 Ex"?%k c tay =Jf) (82)

where ¢o, o0, 22 . . . arc const»éﬁts and f(x) on the right-hand side
stands for some oxpressieNin the independent variable only.
If f(x) 18 zevo, we spez;k’"@f a homogeneous differential equation
of order », if f&) is\differcnt from zero, of a nonhomogeneous
one. W propose(®o deal with this type of equation by what is
known as the‘@jsef'fwéonal method. For the sake of simplicity
we shall, bagridg a brief remark, confine ourselves to the homo-
geneous gafe)
\f’\{

LN fr=1 )
v\’"""f’;;i—f“axgx—n;%+asz—_‘%+ e gy =0 (83)

3
N\ An operdtor is simply a symbol for a mathematicsl operation
that is to be performed or, as we might also say, a direction leo
perform an operation. 'z, dy/dx, [f(z) dz arc instances that are
slready familiar to us; the operational gymbols involved are

yd/dz, and [. Now, some of these operators have a propa?rty
that is most interesting and, at first sight, most surprising.
Though they are, of course, not quantities but indieations of
what we are to do with the quantities to which they refer,
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they can novertheless sometimes be treated as if they were
quantities, Of this, too, we have already had an example (sce
page 151). TIn this book (sec especially page 88) the derivative
has becn defined as an operational symbol. dy/dz is not 5
fraction, but d/dz indicates an operation that iz to he carried
out upon y. The student has nevertheless been taught to use
the differential notation, which amounts to treating this opera-
tional symbol as if it were a fraction with dy and dz as numerstor
and denominator. What we are about to do now iz ndthing
but another step in the same direction ; Just as the difigyential
notation led us to treating dy and dr ag quantities {hht may be
dealt with according to the rules of ordinary a-lgf(ebizz},, 80 We are
now going to treat the symbol d/de itsclf as it were such an

algebraic magnitude. N
For the sake of convenicnce, we introdiidehe notations
A
4 _ o S
(E""_: == Da:, E_T,'_é = Dm‘ ‘..’\@ = Dz

and throw FEquation (83) into thp Torm
(@D7 + aDp ! JdDrt + - - gy =0 (84)

Now we tuke the degigive step.  For the moment, we treat the
Dy, D=1 D2 i:«?L:D(actl_,v as if they were unknown cquantities
in an algebraic (\c\ri.lzttion of degree #; and we treat the numbers
on— 1, 0 22" . as if they were the exponents of those
quantities an.not, what they actually are, indicators of the order
of the differéntiations to be performed. That is to say, we
treat, farlinstance, D2 ag if this symbol moant some quantity m
that\\i‘é to be raised to the sccond power instead of meaning that
so:ﬁe variable, say ¥, is to be differentiated twice. In order to

ceimphasize the nature of the brocedure and to avoid misleading

/

) Implications, we shall formally set up an auztliary eguation in m

which is, momentarily, to replace the bracketed expression in
Equation (84). We write

DM + @l L gamrmt L +a, =0 (85)

We then solve this equation, getting a number of values for m
t%:tat- 18 equal_ to the order of the equation [the order of the opera-
tional equation (84), the degroe of the algebraic substitute (85));
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in this case #. Let these roots be denoted by =, rs, . . . 7.}
By virtue of a basic theorem of algebra, they may be used for
factoring the cquation, i.e., for replacing the auxiliary Equa-
tion. (85) by

aomr — r)(m — ro)(m —rg) - - (m— ) =0 (86)
which can be satisfied in % ways, vé2., by successively equating to
rero the fuctors on the left-hand side

m—r =10 A

AN
m—ry =10 N\
....... % N/
m—r, =0 N
. . . ¢/
in each of which m appears linearly. 29\

Therelore, if woe now drop the m’s, which Kade¥eerved their
purpose, and replace them by the D.'s, we hage)
Dy — 7D = 7)(Ds — 72) - AP, — 7Yy = 0

. & ".: .
and we derive an analogous get of equations, vz,

(D, — ppy'=0
(D, =2ty = 0

&

These equations argdintar diflerential cquations of the first order
and casy to solvq'."; “I'he solution of cach contains an arbitrary
constant and 46 solution of our nth order lincar differential
Equation (8@} Their surn, which will obviously eontain #
arbifrary fistants, is called its general tniegral,

Beforg Hllustrating by an example, we shall briefly glance at the
pro@ediire to be followed if the right-hand gide of an ordinary
%éﬁr nth-order differcntial equation with constant coefficients
18 not zero but a function f(z) of the independent variahble.
We first disregard f(x), or equate it to zero, and derive the gen‘cra.l
integral of the remaining homogeneous equation as explained
above. In this case, the result is commonly referred to as the

' Two or more of them may turn out to be equal. Howewver, since a}l e
tan hope to do herc is to convey an ides of the principle of the operational
weihod, we shall eliminate this complication by postulating that the roots
of the auxiliacy equation be all ditferent.
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complementary funetion. Then we try to find u function of the
independent variable which, when inserted inte the given
nth-order equation in place of ¥, will produce f(z). There are
several methods for doing this that are explained in texthooks on
differential equations but cannot be prosented hers, Ag g
final step, the particular integral so found is added to ithe com-
plementary function. Leaving the matter at this point, we
now furn to our example. N\
Suppose that one of those firms that entered the aujemobile
business during what is known as the “bonanzsa pel‘ioql.’\" Foughly
from 1908 to 1916) experienced a rate of increase % its sales
that, at any moment, was proportional to the Authber of cars
already sold. Sales being denoted by 8, theditte rate of sales
was dS/di, and the rate of increase of tHi§ Wate of salos was
d85/di®, According to our hypothesis N

2 .
Or . .. ' N:
2 N -
e Sks =0

k? being a positive condbant,’

It is reguired tgiﬁ}rd the integral law that will be satisfied
by this ordinar¥fin€ar second-order diffevential equation. In
order to treat the prob!cm by the operational method,? we rewrite

* Whenever o wish to emphasize that a constant is positive, we expross it
by a squgr%bffumbcr, because the square of any (real) number is necessarily

positiv\e;}”;
* Ii\the particulsr cose before us, this is not neeessary. In lact, if we
mulliply both sides of the given equation by 2(dS /di), putting for the sake

704 Bonvenience
QY S, 88 _d
di ’ dit ~ dp
we have
2 %‘ﬁ- = 2k28y

The left-kand side now appears us the derivative of u2, for

dut _dutdu . du
d - dud@ Tt

Replacing u by its value 48 /dt on the riglt-hand side, we get
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our equation so as to makoe it read
(D — kN8 =19
The auxiliary equation

P =k =(m—km+ k=0
has the roots :

ey = k
e — -k L AN
Therefore woe may wrile A ’
. : _ . . :\\..;,
(D, — D+ B8 =20 O
which vields the first-order cquations ' .\:\M}‘)’
DS = a8 -
= _** kS
‘ \i\
N\
and \/
D=9 _ _pge &
S “w’
From the fivst of these cquations we d‘grwe
dS ¢ .“‘
| R\ A
which integrutes into (see pelge 142)
¢ \1@ N
Ur, $inee ¢ s g conu&mt gay, €1
“\\./S = it = ghtgt = gyt
From the sce g@?} ui the above equations, we similarly derive
§, S
’s\ T _k dt
o\ S
N s
) L2 gy 2

it i

du? = 2528 dS
A first-order eynation of a type with which we are already familiar (sce

P 188).  Its integration yields

S e
fi_t = 4 /28O
C

heing the constant of integration.
brithler, |

A second integration then golves the



/N

N\
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which integrates into

log8 = —kt+¢
or, denoting & by ¢s,

8 = ¢ HHT = pppht
8o, finally,

S = et + ng_h

This is the general solution or integral of our equation.. But
the economic meaning of our argument clearly excludes thewsedond
term on the right-hand side; so thal we are Ioff with \ ‘\

L W

8 = gei ~\
which means that the sales of our firm were ddaring according
to an exponential law (sec page 148), a state¥Ql things that could
not be expected fo last and should not haveeen used for predie-
tion except, perhaps, for the immediatd fiture.

Owing $o the frequency of their QC’C?&I"i‘EDC(:, these exponential
solutions are recommended to the “student’s attention. One
particularly important peint abaut them should be udded. In
order to display if, we shgﬂﬁiﬁquire what difference it makes
to the general charactersdf the solution of our seeond-order
differential equation ifjve' change the sign that conneets its two
terms. Suppose thab,We study the behavior of thc price of
some highly spo lﬂ:a;ﬁve commodity over a number of months
and that our dastatistical ohservations sugpgest the hypothesis
that the pricepbiter having been displaced from what we concetve
to be ils eql}ﬂibrium position, tends to return to it at a time rate
that va.-(i:% proportionally to its distance from the equilibrium
positiens Since the tendency in question reduces this distance,
the:f constant factor of proportionality now enters negatively

:i{rst'ead of positively as hefore. Benoting the price by p, its

) equilibrium value by py, the distance between P and pp by P, we
have .

— 2 = a2
pr kP
or
dz ,
F+EP =0
or
D+ )P = ¢
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Proceeding as hefore, we write the auxiliary equation
m? 4k =0
which yields
(m -+ A/ ) — V=) = 0
or denoting the “imaginary” number v/ —1 by 4,
{(m + ikyim — k) =0

Going on ag belore, we arrive at the solution O\
. &Y

— ; —i N
P = ge™ 4 g 4

Now, there exists s rclation, known as Euler’s relation, hetveen
exponentials with imaginary exponents and the sin“g@iqd cosine
functions which ean only be stated (without proghbr/discussion}
here - : RN

etz = cos x & ¢ 8in a:\\

Applying this (o our solution, we have ANV
P = ¢ifcos kt + 4 sin kt) Jdfcos kt — 4 sin kf)

or, combining the sine and the ogsihe terms and introducing new
arbitrary constants, A and B, for the sake of simplification

P =.\§21f§m It + B cos ki

The interest of thisdssult proceeds from the fact that our price
18 practically cerdify to move in a wavelike or oscillatory manner
which may thgs” find its “explanation.” Though ecohomic
oscillations gi“not as a rule of this type, our example, which
has no vi,];tqux except simplicity, may still serve to give the stuant
& first jden of the nature and use of dynamic models In ecoNOMICS.

Higher Degree Differential Equations. An ordinary differen-
fial fquation of the first order is said to be of the second, third,
<+ . degree, if the derivative enters in the second, t-h.ird,l C
Power; the degrec of the equation is the same as the highest
Power to which the derivative occurs. It is possible to deal
With this complication by elementary methods if the equation
@ be solved (1) for the derivative (see page 138), (2) for the
independent variable, (3) for the dependent variable. We
shall confine urselves to an extremely simple example of case
8} in order to convey some idea of this kind of problem.
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Accordingly, consider the equation

_ . dy _ fdy ¢

P =% & (dx)
This equation already gives y cxplicitly, so that we need not
solve it.  The device to be learned consists in diferentiating the

equation for z. It is usual to put for convenience N\
_ &
p= o\
. O

We then have (after differentiating the given e;glﬁid’ﬁion}

dy : dp \~"t¥}9\'
e =P TP Eg G,

b
Hence, canceling the terms p on cacl{s}ﬁe,

)
_ A v/ dp
0= (:r;:' p*) aa
N
Manifestly, this equation eati*be satisfied in two ways, The first

1My

is to put Ny

4 dp

\ —_— =

O 2 =Y
¢ '\\.'

whence it follqv?%} since the derivative of a constant is zero, that

£ )
o N

N\ p=c

RemeQ@Bﬁng that p = dy/ds, we have by a further integration
O - y =z + ¢y

i,,\‘\%}iere ¢y I8 the constant of dntegration (sce page 140). A glance

“\wat the given cquation tells us that ¢y must be equal to —ef
N/ Hence we write (dropping subseript 1)

¥=cx — gt
But, second, we can also put

z—3p*=0

x
.

so that

-
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and hence, choosing the plus sign,

dy =\/§d:c

or, writing this somewhat differcntly

V3dy = atida
This integrates mto
\/g?f = 242% + es
ar, putting ¢z = G, _ O\
Ayt = da’ NS *

which, as the student may easily satisfy himself by suhsti‘ﬁﬁtinn
into the given equation, is also a solution, ' \\
Partial Differential Equations. In economies, still)more than
in physics, we have as a rule to deal with problems that involve
many independlent variables or, at least, motéythan one. The
student will vightly suspect, therefore; cthal the differential
equations of economic theory are likely fio eontain partial deriva-
tives of varicus orders and degrees,thehee fo be partéal rather
than ordinary differential equati,cij:gé.’ The methods of dealing
with the former constitute, howtver, 4 vast subject into which
we cannot enter here,? Bubghimportant point ray be conveyed
in an elementary manner;{",\
In Chap. 1V (page IQ&)"t.he following symbol has been intro-
duced: '
&7 aeg/ep) _ oG
N ag  9pdyg
the so-call ‘}{a}cond “poss derivative.”  Dropping the economic
connotation” there sttached to the letters and replacing the
de}g?gl({eﬁﬁ variable G by 2, and the independent variables p and ¢

\¥
MThe definition of linearity (first degree) differs someswhat with different
tlassos of difforential equations. Ordinary differential equations and partisl
dlf’fprent.ial equations of order higher than the first are called linesr if t!ne
d?m’atives and the depeudent varighble enter in ihe first power; hut partzlal
differentia) equations of the first order are called linoar if the occurring
Partial derivatives are linear, no matter what the power of the dependent

variuble ig, .
* Advanced {reatises on ealeulus usnally offer a first introduetion to it.

Tfh.m'e are ulso special trestises on the mebject as well as on subdivisions
of it,
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by & and y, we can set up a second-order partial differentia]
equation in the simplest possible way by putting that expression
equal to zero; thus

%
ox dy

In order to bring out the significance of this equation, Wwe
may use an economic example that, though antiquysed,” will
serve our present purpose. Interpret 2 as the sa:’*;is\fzﬁ*rt}on al
individual derives from the consumption of the, cetmmodities
z and y. d2/9z then stands for the marginsl Wiility of the
commodity z to the individual in question @ud éz/8y for the
marginal utility to him of the commodityy. 9%/3r dy may,
first, be looked upon as the partial derivative of the marginal
utility of commodity x with respect todhe amount of commodity
¥, that is to say, as a measure of;t’[;te“ra.te of the change that
oceurs in the marginal utility of £\ the individual soequires or
loses y. If this change is zer‘o,.’;t-h'i's manifestly moans that such
acquisition or loss of y deds 'not affect {he Inarginal wutility
of z to the individual. But'if the marginal utility of 2 is inde-
pendent of y, it musf Qdep'e'nd on x alone and we may write

or, multiplyiAg hoth sides of this equation by the differential dz,

\:\ 9 dz = f(z) dz
,§~ dx

..\3 Second, 9%/as 9y may similarly be looked upon as the partial

“\Mderivative or rate of change of 82/8y, the marginal utility of

commodity 7, with respect to varistions in the quantity of
commodity z. TIf this rate of change is zero, according to the
given second-order equation, this aguin means that the marginal °
utility of y is independent of the amount of x tho individual
possesses.  Hence the marginal utility of y must depend on
the quantity of y alone, and we may write
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or, multiplying both sides of this equation by the differential dy,
dz
5‘?; dy = F(y) dy
By addition of the two foregoing results, we get
&z dz 7
e+ a—ydy = f(x) dz + F(y) dy

Now, at the end of Chap. IV {page 105) the eoncept of total

derivative waz introduced. In the light of what has been saida .

{ .\

in the current chapler (see page 151} on the subject of the di’ﬂ‘;%r- -

ential notation, the reader should have no difficulty in grasping
the meaning of the following proposition: If 4 variable z{cpends
upon fwo independent variables z and y. its tothdé’rivative
with respect te one of them, say =z, is U

iz = 9% _l_ %d_y :’\\':
de 9z ' dydz AW
ar, “multiplying through’ with dz, QO ¥
az ‘:"éﬁ
ly = — dzls— d
dz dx {{t‘k" oy 4

de is called the total differentigh, 'The proposition reads in words:
The total ineroment (positive or negative) that & function of two
variahbleg exp«::riences,\@ﬁéh both of the latter are allowed to
vary simultancously by ““infinitesimal” amounts, may be cquated
to the sum of twdderms, cach of which represents the effect on
the dependent'\i&f-iab]e of an inerement in one of the two inde-
pendent vasiabios, the other independent variable being held
tonstant.(\In physics this is called the “principle of super-
pOSit'}QII"bf small effecta.”’ Lot us apply it to

AV RS LA CL AL

Since in our example the existence of z is postulated, h.cnce not i.n
question, we evidently may replace the left-hand side of this
quation by the total differential dz and write

| de = §(a) dx + F) 4y
% Integrating

z = [flzx) dz + JF{y) dy

N
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Whatever the properties of the functions f and £ mayv be, they
are certainly functions of, respectively, 2 alone and y alone.
Hence the indicated integrations, whatever their particular results
may be, cannot produce anything but a funetion of » alone and a
function of y alone, and we derive finally

z = ¢2) + $ly)

This result tells us two things. Firat, referring to the feononmie
meaning we have aftached to the magnitudes z, &, and g e
have learned that if O\

d%z N\
dx oy by

the marginal and total utilitieg of our individua-]fsttv:;o commodi-
ties are independent of each other. In this,f&etse[. and only in
this case, therc is senic (granting all theNdther assumptions
implicit in utility analysis) in speaking of\the total utility of any
commodity taken separately and inN{r(l)Bing such tobal utilities
together. The vanishing of oun\\leecond cross derfvative”
has in fact been made the eritévion of the independence of
commoditics by an earlier generition of economists (Edgeworth,
Pareto).! Ny

But, sccond, our resulélalso teaches us that the process of
integrating or solvingpartial differential equations will introduce
one or more arbird?y functions into the result. In our casc, J
and F, hence slsé. and ¥, aside {rom being, respectively, func-
tions of # alon€'and y alone, are entirely arbitrary, .0, undetei-
mined so fatlas the mathematics of the problem Is concerned.
This 15 thesmathematical fact 10 which the student’s attention
should/berawn,

Haxlier in this chapter (see pages 139 and 140), it has been

painted out that in solving ordinary differential equations we
nd ﬁuist introduce arbitrary constants into the solution, the so-called

h

\ ' 1A possible misunderstanding should he guarded againgt, Whether two
or more sommaodities are independent or not in the economie scnse just
explained, they are always independent variables in the mathematicsl senge.
Sugar and eoffee are not independent commodities in the economie sense; at
least not for most of us: it maloos a difference to our cnjoyment of a eup of
coffee whether or not we have sugar to sweeten it,  So far ag (his is the ease,
our second cross derivative would not vanish, if  were coffee and y, s1gar-
But z and y are ma_thema-t-ically independent variables nevertheless: we cun
vary the quantity of the sugar we consume withoul, necessarily also varying
the quantity of coffce.
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consianis of tntegration. For the case of additive constants of
this kind, th:s has been explained on the ground that if there were
any additive constant in tho integral function to he derived
this constant would, the derivative of a eonstant heing zero,
fail to show ir the differential oquation. The fact about partia]
differential equoations that we have just discovered is the exact
analogue of ihis.  Only, in the case of partial differcntial equa-
tions, we get arbitrary functions instead of arbitrary constunts.
Both must be determined from additional information about the
problem in hand or, more precisely, about the situation frgrl@t\
which the rolztion starts that is expressed by the differential®
equation. Marginal costs of a going eoncern do not confain the
olement of overhead (fixed or supplementary cosfs). } The
function cxpressing marginal costs, therefore, carndt tell us
anything ahout it, hence the arbitrary constaalt that enters
when we intograte the marginal-cost function yand hence also
the arbitrary funetion that enters the Q@‘];u\ion of a partial
differential equation. \®

In the conditions of our example, this‘mby be further elucidated
as follows.  Partially diffcrentiating®ur solution

z = ¢(x}+“ ¥{y)

with respect 1o x, we get the‘marginal utility of eommodity z
o\

ar

As the student ~3bsférw;es, we have already lost the funetion ¢(y) -
which thércfo;-eiﬁ?\ent-il'(zly' arbitrary, provided only that it does
10t contain gy gf far as this first-order partial differential equation
i? concerm@’; "I now we go oh and differeqtiat-e onee more, this
t.1me fOr:'g;I, we ha-_VC .

A Az
2 = i

N\
"\ ¥/ 623

\V gr dy

the given second-order partial differential equation from whi{':h
Ve started. But any functions ¢’(x) and ¢{z) will Sa’tiSfy 1.
'ee the same rosult would have followed had we partially,
Ehf?ereﬂtia-ted our solution for y instead of differentiating it for z,
s clear that, the given second-order equation implies nothing
shoyt the form of either ¢ or ¢. Only additional information

tan tell us what they look like.
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CHAPTER VII
DETERMINANTS

In the preceding chapters, the student has been Introducedrto
many functional relations that exist between economic pagnii-
tudes such as quantities of commoditics, prices, interegh.ates,
and the like. These relations have been expressed in £h8 Torm of
equations, each of which contributes to our undeasmndmg of
some observed cconomic facts.  But though mughiein be learned
by such analysis of isolated economie relatian‘s};\re cannot stop
at it. Tn order to understand any given gtdfe of the cconomie
organism ag 8 whole or even of any sele,(st}& part of il, we must
also take a comprehonsive bird’s- cyeW‘ieW of all the relations
that are known or are supposed toy XISt at a given fime hetween
our magnitudes and 1nveat1gate,. st were, their joint operation,
This may be illustrated by & Very qlmple examiple: we learn
something by discussing the law of demeand of a commodity;
we learn something clseby discussing its law of supply; but the
complcte mechanlarawqf a market reveals itself only when we
congider both of tiﬁa simultaneously, This is why, in economics
as in other scignces, we have usually to deal with systems of
cquations rathéthan with individual equations.

Tn this simple example the equations to be handled are only
two in, q{ﬁnber Supposing that they are linear, and denoting
pric ‘1\'9 v and quantltv supplied or demanded by #, we may write
them in the implicit ¥orm (see page 8)

'.\.

o’

0w 4 by + e = 0 Lo

a2$+bzy+62=0

where a1, b1, ¢1, and as, by, ¢s are appropriate eonstants. Solving
the equations simultaneously will yicld that pair of values of &
and y which satisfies both relations. That is to say, sclution
will yicld that price at which quanmty supplied and quantity
demanded are equal; and that price is particularly ‘interesting
for this very reason. Geometrically, this so-called equtlibrium
price is identified by the point of intersection, if it exists, of the
172
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two straight lines that represont the equations. Before proceed-
ing, the student should make sure that he has followed so far.!

The Concepi of a Determinant. If the systems of equations
with which we have to deal were all ag simple as the one that has
just been considered, there would be nothing more to say.
But it is readily seen that the merc number of the relations and
conditions that make up the theoretical pieturc of economic life,
even if these relations were all linear, suffices to make the solu-

tion of most of the systems of cquations that we may be able
to construct an extremely iaberious if not impossible taskh
Moreover, wo are frequently not intcrested in the so]‘u:ﬁoné
themselves bl only in certain propertios of -t-hem—gerfi;et-imes
even only in the guestion whether a unique solution@sasts at all.
For both reazons it is important for us to acqmﬁn\t ourselves
with the rudiments of a method that facilitafeiNthe solution of
more extensive systems of equations or at\éast provides an
easy answer to the question of the existénté of a solution, 7.e.,
of & unique set of values of the variables that will satisfy all
the equalions of the system, provided that the latter is linear.
This method consists in the use .Of determinants,

In order 1o see what a det@r‘minant iz, we shall first solve
equations (87), in the uswal Way, for the unknowns z and .
We find = by multiplying the first equation by by, and the
second by — by, andicfdiﬁg. This yields

({}1?32 - agbl)x + bgC]_ - 33102 =0
hence N
' ’\'“. B bics — Bot1 (88(1)

o ’:' T = e e
Z\ albz - a-Ebl

Simiﬂ.}%}}n we find ¥ by multiplying the first equation by —aa,
andsthe second by ai, and adding

\ 4 (G'flb;a - €E251)y —+ e — C1Gz = 0

' The reason why we are particularly interested in the pri‘?e that f;r.iuu,f.gs
Mantity demanced and quantity supplied is that undar eertain C-Ondltlﬂn? it
i this price that “tends™ to prevail and, when depariced from, to reestat.)llsh
itsolf if 4he eunse responsible for the doparture iz removcd_. 17.'01‘ this to
happen_. equality of quantity demanded and quantity S’UPPhed 1 howew‘:,:r
Ufﬂy a necossary but not a sufficient condition. n addition other condi-
tons, the so-called secondary conditions, must be fulﬁlled._ If they arc,
We speak of stghic o quilibrium which is the real object of cur intercst, Ttis
1% possible to enter into this wmatter here, '




174 RUDIMENTARY MATHEMATICS

hence
_ fafla — Cafly

Y7 6 = by (58)

The student will ohserve that the denominators of the two
fractions are identical and can be obtained by inspestion from
equations (87) as follows: Multiply the coefficient of + in each
eguation by that of y in the other, and take the diffcrence Hetyween
the results. He will observe also that the numerntor !
derived from the denominators by replacing, in the fesy “case,
the @'s and ¥’s by the #'s and ¢’s, and, in the second afgé/the
a’s and b's by the ¢’s and a's. Knowing thesc facta, We could
have written down the two solutions without act-uaj‘}?);' 13:&_:‘1’01‘H1jng
the operations by which we derived them. IH'\Oili' simple case
no significant saving in labor would have beeh ichieved by this
method. But manifestly this iz no 10nge&&o when we have to
deal with many variables and many equégions.

Aceordingly, we introduce the fu]l?ﬁﬁ}rg notation:

A= aby - szl,‘,ﬁ'#gf gzll' = |21 Zl (89‘1)
o B Ol e On

By = bies — by = 521 ?j - il o (895)
. e ¢ B2 ol
A : o1 e ey a

e SRR LS B

X\ .

The square blaeks formed from the constants of our sguations
arc called delgmifnanis and are usually denoted by the letters
D or A, Beghuse each of the shove doterminants consists of
two rowgahd two eolumns, wo call them determinanis of the second
order.\&ﬁystems of 3,4, . . . n linear equations in 3,4 ...n
variables vicld square blocks of 3,4, . .. nrows and columns

[t are called determinants of the 3d, 4th, . . . nth order. Tor
\ﬁﬁe sake of simplicity, we shall confine ourselves as much as
possible to second-order deterruinants. As we seo from (89),
they are casily evaluated by cross-multiplication, left-hand upper
element times right-hand lower clement minus right-hand upper
element times left-hand lower element. )

Formal Rules about Determinants. In themselves, the deter-
minants in (89), like all determinants of any order, arc merely
a particular way of writing the algebraic expressions on the left-
hand side of (89). Their usefulness is due to the fact that they
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can be convenicntly handled according to eertain mechanical
rules. Tor example, the student can easily vorify by evaluation
that '

1. A determinant’s value is zero if one of its rows or columns
consists of cisinents of zero value or if the elements of one row
or column are equal or proportional 4o the elements of the other
row or columit.

2. A determinant’s value remains the same, if rows and
columns are interchanged [as shown, for cxample, by the fwo
block arrangements in (89e)]; its numerical value remains the
same, but it= sign is reversed if the two rows or the two colundns’)
are interchanged, . QO

3. A determinant’s value is multiplied or divided by ag@ohdtant
kil the elements of one row or column are multiplied 8y divided
by k. . s
These and other rules apply to determinantsieny order.

The Solution of Linear Equations. Retqrmﬁg to the solutions
for z and y {88a and &) of the systemeaf Gouations {87) and
taking account of (89), we realize witho@hsny further explanation
that they can be expressed in terms of the three determinants
4, Ay, and 4., Inm faet ',::‘:.' )

™
N

by ba

C1 Cr _ &y . 90a
g‘ﬁg'— aabiy ) ‘al G;z; A ( ' )

= blC}«%_bﬁ:l

N

b by
I\-Cl £
O : - I:‘I &€ Ag :
Oy = 9% T el BT L 22 (90D)
:"\:' Glbz — (I-zbl |(11 (12" A
N\ b1 bai

2 8

Thig'sesult, known as Cramer’s rule, is also valid for any system
\ﬁ 7 nonhomogeneous linear equations in 7 variables.! Considex
the system of linear equations '

{ions that contain only

1 f .
By homogencous linear equations are meant equa multi
r i-

‘-eFms of the form g, T, 4.6, one of the » varinbles in the first pﬂf"e .
plied by & constant. Nonhomogeneous linear equations contain, besides
such terms, also an additional eonstant, differing from zero. This definition
o the lerm “homogeneons” agroos, 4 - special case, with the ope adopied
before (see . 107).
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auy + thsts + - 0 0 b aa, = Ci
fiz151 + Qaskz -k - ¢ 0 F 0o, = e (91)

Bi®1 F GasTe + - ° A Gpntn = €a

If the determinant

@11 @iz © 0 O
(g1 g ~ * e

A= 8 {(92)
Pr A
a1 Fag © " 7 g &\

'0~\.\ .
is different from zero, then the equations are satisfied by a nnique

set of values of the variables, viz., N
A A, X,

@y = El’ Iy = f, G & A {03)
where Ay, 4y, ... . A, are the d(ztermjﬁ,.’-b}lf-s that result frowm the
determinant A, if we replace thq'}sf, 2d, . . . sth column,
respectively, of the latter by the elethents ¢y, e, . . . o,

It ' . ’._:’:.
s'.".'%: O

then the system (91) h gs‘ﬁb’solution‘ The reason and the mean-
ing of this can besl‘}"'he conveyed by a two-variable example.
The determinang of $he system of equations '

&

O dr 4+ 2y =35
7% N/ 4
P, 5x+4y=6} (94)
iS ::\;.,:_ N
W 2
\J A= 3 = 19 — -
\,\\ ‘6 4} 12 — 12 = ¢

~We sce in fact that tho two equations (94) are inconsistent,
_)"and this is precisely what zero value of the determinant means
in this case.
Now let us consider a system of # homogeneous linear squations
in % variables, ¢.¢., a system in which all the ¢’s are zero,

%y + Gugts + - - - + @1a2n = 0
@y + Gpry 4 - - - AonZy = () {95)
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If we atternpt bo apply Cramer’s rule, we find that all the numera-
tors Ay, Az, . . . A in the expressions (93) become zero, because
they all contain & column of zeros (sec rule 1, ahove). In this
ease, therefore, the variables can have values different {from zero
only if A = 0. These values are not however unique: the
nunher of zolutions of the system is then infinite. .

As stated above, 1t ig frequently sufficient for the purposes of
ceonomic theory to know whether or not a given-gystem of equa-
tion possesses a solution at all, especially a unique solution. The £
student will observe that the propositions that have been prec

. . . ) WA
sented cnzble us to answer this question without actually workitig
out the soiution. For instance, in the caze of 2 nenhemo-
geneous system of # Jinear equations in » variables \vg%}iﬁ']l have
proved the existence of a unique solution as soth's we ghall
have proved that the deferminant of the coefffelepts is not zero,
and thiz iz much easicr to establish than it iSQu 2olve a system of
many equations. ' o 2

Determinants are also useful for rqa,i;l} other purposes. For
ingtance, the student has learned {ged,Jpages 118 to 129) how to
distinguish between the maximuudiand the minimum of a given
function in the cascs of funchigns of one varisble and of two
variables. N\

By using the differentiab notation (sec page 151), the condi-
tions for the existenc€™of an extreme value of a function of n
variables X\ )

> ¥ =flEnge, 0 3)
may be stated\ns follows:

1. FOT; ;@.ﬁektreme value to exist at the point 2z, = @1, 2 = &2
T N, it is necessary that the total differcntial (see
pa.gpgf.;ﬁ]ﬁ and 169)

S

~O° _ 9 o R 96)
y % = 311 dz: + By 9z + + Er G (

be zero at that point,
. 2. For that extremo value to be a maximum value of the func-
tion, it is further nceessary (and sufficient) that
iy <0
for all displacements from that point (if we stand on the top of &

hill, any possible displacement spells descent); for that extreme
value to be a minimum value of the function, it is necessary
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(und sufficient) that
dy > 0

for all displacements from that point (if we stand at th bottom
of a bowl-shaped valloy, any possible displacement spelli ansent). !
If there are many independent variables, d*y becomes s sumber-
some algebraic expression.? The use of determinanis iz then
Imperative in order to make sure of the sign of d%. 1t is heyond
the scope of this chapter to teach this technigue. Inatéad,
another technique and some additional concepts pertainiag Yo it

. . 2 AN
will be deseribed below, o N

The Evaluation of Higher Order Determinants. “dince the
rules for the evaluation of determinants of any oy{iéf«hig-i‘aeer than
the third are mercly extensions of the rule fotthe third-order
case, we shall confine ourselves to the lattors{C\Fhe busic rule is

|0‘»11' 12 g

I N .
: I2a (ag, Jaﬁl' 3&23‘ doi iz
Qa1 ez Rag| = G-u‘ O] T odre ] O+ a}_gl ! (97)
T30 figs [@Q‘asm |31 Gaw
Qa1 Gz dag X )

YIE d?y is positive for some displacements and negative for ethers, we
have neither a maximum nor s migivim but what is keown as o seddle
point. The ease d?y = 0is not provided for by our eriterion as staicd above.

? The reason for this s that (}viéﬁ}?’ partial derivative is & funclioa of all the
independent variables and henge must be differentisted with respoct to all
of them. In the caseof tl{ne independent varialles 2, , %, we have

oy aaf;gm; g2 af
jof = 22 g2 . ! =L e 9V b
def ax2d$ —{—26——55, rixdy+2axazdxdz 1 ay.azdydz
N\ 32f o @2
+mdl’;‘2 -:';zdzz
¢ v

The expregsion®on the right-hand side {any wuch expression whuiever the

rlumber't\fsfi}depcndent variables} is scen to be of the second degree, a

8O-¢: ghiadraiic form, in the differentiais dz, dy, and ds.  From iis coeffi-

cienty fthe second-order partial derivatives] the determinants are formed to

which allusion is raade in the text: the sign of the expression depends upon

~ {the signs of those determinants. Tn our case there are three of them: one
\ Jof the firgt, one of the seeond, one of the third order

& aF o
Y e | oy Gz ae
|a%f 9zt dr dy 83 Ay pf
622 | 0¥ @ ' |azay o ayad
o iy dye a2 Y g

% dz Gy Iz dt

It is hoped that the use of the phrase “second order” in two different mean~
mngs, second-order derivative and second-order determinant, will not ton-
fuse the student. .
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That is to say, we first take the elements of any row (or eolumn),
and multiply cuzh of them by the determinant that we get when
we delete from ihe given determinant the row and the colymn
that intersect in the chosen cleraent. The determinants that we
derive by this wrocess of deletion are called minors when their
absolute valuc iz considered! and cofactors when g, sign is attached
to them according to the following rule, The cofactor of any
eement of a doterminant carries a plus sign, when the sum of
the numbers {numbering is from the top and from the left) of the
row and the cciummn of the chosen element is even, and & mings),
sign when this sum iz odd. In (97), ai; stands in row Prand®
column T; T - T = II, hence the ecofactor carries a plis sign;
a1 stands in row T and column IT; T 4 1T = IIT, ~hfen€'e the
minus sign; and so on, _ AN

Using the concept of eofactor, we can saystbat the second
step of the procedure consists in adding theproducts of the
elements of ary row or column and their ofdctors. The result
18 the value of the determinant. This‘is"l’;nown as the expansion
rule.* In the vase of determinants of order higher than the
third, the colnsiors themselves arefdntermjnants of order higher
than the seccnd. The expa-r}siéﬁ' rule must then be applied
to cach of theiu: s often as is"mecessary in order to reach second-
arder determinaits that u{n be evaluated by the eross multiplica-
tion previously ;asm;ib&ﬂ}‘

' The student =il nekiee that a determinant of order # contains n* minors.
DBy evaluation, fhe*student can easily verify, in the case of (87), the
following theorany s Iich is frequently useful in the manipulation of deter-
minants; if thefletonts of a row or column sre multiplied by the cofactors
'nf the elem“\ﬁ”ﬁ"\éf any other row and column, then the sum of these products
18 zern, g .
 Untiabout 1500, economists made very litile use of the determinant
n'?tq’ti!h: s popularity has steadily grown, bowever, so that the theoreti-
\ifﬂl{iﬁemtme of the last, decade is hardly ancessible without some .kna_wledge
the prineipal methods conpected with it. - The student who wishes to go
bevond. this chupler is referred to elementary or advanced treatises on
Mo {e.g, to Chup. TT of M. Bocher’s Friroduction lo ITigher Ar‘,‘gebm) and
% the special treatises on determinants.  All an economist needs in order to -
wnderstang almos any economic hook or paper that uses determinants 18
“euembled in Chaps. 3(VIII and XIX of R. G. D. Allen’s Mathmam;:d_
grﬁeym for Economists, 1938, perusal of which may perbaps best serve the
"ot a3 a secoud step on this road.
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